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Abstract This study deals with different tool surface descrip-
tion methods used in the finite element analysis of sheet metal
forming processes. The description of arbitrarily-shaped tool
surfaces using the traditional linear finite elements is com-
pared with two distinct smooth surface description ap-
proaches: (i) Bézier patches obtained from the Computer-
Aided Design model and (ii) smoothing the finite element
mesh using Nagata patches. The contact search algorithm is
presented for each approach, exploiting its special features in
order to ensure an accurate and efficient contact detection. The
influence of the tool modelling accuracy on the numerical
results is analysed using two sheet forming examples, the
unconstrained cylindrical bending and the reverse deep draw-
ing of a cylindrical cup. Smoothing the contact surfaces with
Nagata patches allows creating more accurate tool models,
both in terms of shape and normal vectors, when compared
with the conventional linear finite element mesh. The compu-
tational efficiency is evaluated in this study through the total
number of increments and the required CPU time. The mesh
refinement in the faceted description approach is not effective
in terms of computational efficiency due to large discontinu-
ities in the normal vector field across facets, even when
adopting fine meshes.

Keywords Sheet metal forming . Finite element method .

Contact mechanics . Tool surface description . Surface
smoothing

Introduction

The strong reduction of development periods observed in the
automotive industry, which is imposed by the powerful global
competition, led to the redefinition of the conventional
manufacturing procedures used in sheet metal forming pro-
cess [1]. Thus, the traditional tool design methods based on a
trial-and-error loops or empirical procedures have been pro-
gressively substituted by means of finite element analysis,
shortening the delivery periods [2]. Nowadays, through the
simultaneous improvement of solving methods and computer
technology (e.g. multi-core processors), the numerical simu-
lation of 3D sheet metal forming process can be used to
predict the occurrence of some defects, such as fracture,
necking, wrinkling and springback. [3, 4]. Hence, in order to
improve the accuracy of sheet metal forming simulation,
numerous efforts have been made in the last decade, which
can be divided in in two categories: (i) development of new
finite elements [5–7] and (ii) development of new material
constitutive models [8, 9]. Nevertheless, the mechanical
modelling of sheet metal forming comprises three strong
nonlinearities, which are dictated by the frictional contact,
the geometrical nonlinearity produced by large deformation
and the material nonlinearity due to the elastoplastic behav-
iour [10]. In fact, the numerical modelling of the contact
between the sheet and tools plays an important role in the
material deformation, which is directly associated with the
tool modelling accuracy [11–13].

Typically, the forming tools can be considered rigid in the
finite element model, allowing to model only their outer
surfaces. Therefore, in sheet metal forming processes the
contact occurs between a deformable body (sheet) and several
rigid obstacles (tools), which represents a relatively simple
case of contact between deformable bodies [4]. Taking into
account this simplification, the tool surfaces geometry is com-
monly defined by using one of the three following different
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approaches: (i) analytical functions, (ii) finite elements or (iii)
parametric patches. The first approach is restricted to simple
tool geometries, since the geometry is composed by an as-
sembly of simple analytical shapes [12]. On the other hand,
for arbitrarily-shaped tool surfaces, the finite element mesh
approach is usually employed due to its ability and simplicity.
However, this approximation can lead to large errors in the
geometry, requiring an extremely finer mesh in curved regions
to obtain an accurate tool description [12, 14]. The last ap-
proach resorts to parametric patches, which can be obtained
either directly from the Computer-Aided Design (CAD) mod-
el or by smoothing the finite element mesh. Concerning the
first option, trimmed NURBS patches are commonly adopted
in CAD systems, dictating very complex and computationally
expensive algorithms to deal with these patches [15].
Furthermore, CAD models are known to be plagued by geo-
metrical or topological errors and inconsistencies [16], which
make its application difficult within a finite element environ-
ment. On the other hand, several surface smoothing tech-
niques, such as NURBS [17], Bézier [18] and Gregory patch
[19], have been proposed to overcome the problems related
with the accuracy of the finite element mesh description.
Indeed, the faceted tool surface description, resulting from
the spatial discretization of the contact surfaces with linear
finite elements, leads to artificial oscillations in the contact
forces due to the discontinuous contact surface normal field,
which causes convergence problems in the iterative procedure
[13, 14]. In order to overcome this chattering effect, new
techniques based on mortar methods have been successfully
introduced in computational contact mechanics [20]. Using
this approach, the contact constraints are imposed in an inte-
gral form instead of nodal enforcement, commonly used in the
classical node-to-segment contact formulations. Thus, the
mortar approach provides superior robustness in the solution
of contact problems involving large sliding due to the integral
evaluation of the contact conditions. This is particularly effec-
tive for faceted contact surfaces, where the integral evaluation
of the surface contribution produces an artificial smoothing
[21, 22]. More recently, the isogeometric analysis was intro-
duced for the numerical simulation of frictional contact prob-
lems, providing a more accurate geometric representation than
traditional finite elements [23].

The objective of the present study is to analyse the effect of
tool surface modelling accuracy on the numerical solution of
sheet metal forming processes simulation. Three different
methods to describe the forming tools are presented: (i) facet-
ed surface description using bilinear finite elements, (ii)
smoothing the finite element mesh with Nagata patches and
(iii) applying Bézier patches obtained from CAD. The geo-
metrical accuracy achieved in the tool surface definition, using
these different surface description methods, is evaluated and
compared. Besides, the contact search algorithm used by each
surface description method is described, since it is highly

dependent of the selected description method. Two distinct
examples of sheet metal forming are carried out to compare
the effectiveness of the presented methods. The selected nu-
merical examples comprise the unconstrained cylindrical
bending and the reverse deep drawing process of a cylindrical
cup. The studied results take into account both the main
process parameters and the numerical variables related with
the contact between the sheet and the forming tools.

Tool surface description methods

The three principal tool surface description methods adopted
in the numerical simulation of sheet metal forming processes,
involving arbitrarily-shaped tools, are described in detail in
this section. The first approach uses Bézier patches in the
surface description, which are obtained with the aid of a
specific CAD package. In the second approach, the surface
finite element mesh is smoothed with Nagata patches,
allowing an accurate approximation of the tool shape.
Finally, the classical approach is presented, which describes
the tool surfaces through a finite element mesh using bilinear
finite elements. All these approaches were implemented in
DD3IMP finite element code, which has been specifically
developed to simulate sheet metal forming processes [10].
Its main characteristic is the use of a fully implicit algorithm
of Newton–Raphson type to solve, within a single iterative
loop, the non-linearities related with the frictional contact
problem and the elastoplastic behaviour of the deformable
body. The frictional contact is defined by the Coulomb law
and treated with a mixed formulation, using the augmented
Lagrangian approach proposed by Alart and Curnier [24]. In
order to analyse medium scale problems in an acceptable com-
putational time, some high performance computing techniques
have been incorporated, such as OpenMP directives [25].

Bézier patches

Typically, the geometric definition of the surfaces composing
the forming tools is performed with the aid of CAD software
packages. Thus, the information about the Bézier patches can
be extracted directly from some CAD packages using the
standard STEP file format. However, this strategy involves
some limitations due to the inherent simplicity of Bézier
patches, particularly when applied to describe very complex
geometries. Indeed, it is necessary to perform some careful
operations on the CAD model, such as surfaces division, in
order to attain a proper geometrical definition with patches
presenting a reduced degree. Nevertheless, this laborious
manual intervention process is incompatible with complex
models involving hundreds of patches [26].

The most widely used method in geometric modelling
applications is the tensor product scheme, which is basically
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a bidirectional curve scheme [27]. Thus, a Bézier patch can be
defined as the tensorial product of two Bézier curves, given
by:

S η; ζð Þ ¼
X

i¼0

n X

j¼0

m

Bi;n ηð ÞBj;m ζð ÞPij; with 0≤η; ζ≤1; ð1Þ

where Pij are the position vector of the vertices composing the
polygonal control net, leading to a total of (n+1)(m+1) con-
trol points, since the indices n and m present a variation equal
to the number of polygon vertices less one, in each principal
direction of the patch. The Bi,n and Bj,m are the Bernstein basis
functions, defined in each direction through the local coordi-
nates η and ζ. The Bernstein polynomial of degree n is defined
by:

Bi;n tð Þ ¼ n
i

� �
ti 1−tð Þn−i; for i ¼ 0; 1; …; n; ð2Þ

where the binomial coefficient is given explicitly by

n
i

� �
¼

n!

i! n−ið Þ! if 0≤ i≤n

0 otherwise

8
<
: ; ð3Þ

where n! denotes the factorial of n. In order to highlight the
position of the control points that define the patch, Fig. 1
presents both the polygonal control net and the resulting
Bézier patch.

Bézier patches can also be described using the monomial
form, also called power basis form [28]. The main advantage
of this form is that insures lower computational time for
operations such as calculations of point coordinates or deriv-
atives. However, it is numerically less stable, mainly for
patches with high degree [28]. Taking into account its fea-
tures, the power basis form is the one used in this study to
describe the tool surfaces, where the maximum patch degree
allowed in each parametric direction is limited to six to avoid
numerical instabilities [26].

Nagata patches

The smoothing method selected in this study to improve the
geometric accuracy of the tool surfaces is the one proposed by
Neto et al. [29], where the contact surface is defined byNagata
patches. The key point of this method is the application of the
Nagata patch interpolation algorithm [30], which recovers the
curvature of the surfaces with good accuracy, using only the
position and normal vectors at the finite element mesh verti-
ces. The interpolation degree defining the Nagata patch is
quadratic in both parametric directions and the patch typology
is arbitrary, nevertheless in this study only triangular and

quadrilateral patches are used (see Fig. 2). The first step of
this strategy is performing the discretization of the tool sur-
faces using any mesh generator, producing a mesh that can be
composed either by triangular or quadrilateral finite elements.
Then, the required surface normal vectors in each vertex of the
tool surface mesh are evaluated from the information available
in the IGES file format [31], which was originally used in the
surface mesh generation.

Considering the simplest case of an edge interpolation with
a Nagata curve, the resulting curve is defined by:

C ηð Þ ¼ x0 þ x1−x0−cð Þηþ cη2; with 0≤η≤1; ð4Þ

where η is the local coordinate of the Nagata curve. The
position vector of each edge end point is defined by x0 and
x1, while its unit normal vectors are given by n0 and n1,
respectively. The coefficient c, which adds the curvature to
the edge is calculated as:

c x0; x1; n0; n1ð Þ ¼
n0; n1½ �
1−a2

1 −a
−a 1

� �
n0⋅ x1−x0ð Þ
−n1⋅ x1−x0ð Þ

� �
a≠� 1ð Þ

n0;�n0½ �
2

n0⋅ x1−x0ð Þ
∓n0⋅ x1−x0ð Þ

� �
¼ 0 a ¼ �1ð Þ

8
>><
>>:

;

ð5Þ

where a=n0⋅n1 is the cosine of the angle between the normal
vectors. The above formulation, described for an edge, can be
extended to general polygonal patches, such as triangular and
quadrilateral patches, assuring G1 continuity at the vertices
and quasi-G1 across the edges between patches. The idea is to
first interpolate independently each edge through the quadratic
curve using Eqs. (4) and (5). Afterwards, the Nagata patch is
defined by its trace on the quadratic segments [30].

In the case of a triangular finite element, schematically
presented in Fig. 2 (a), the resulting Nagata patch is defined
by the following quadratic polynomial:

S η; ζð Þ ¼ c00 þ c10ηþ c01ζ þ c11ηζ þ c20η
2 þ c02ζ

2; with 0≤ζ≤η≤1;

ð6Þ
where the six coefficient vectors cij are calculated using only
the position (x00, x10 and x11) and normal vectors (n00, n10 and
n11) of the finite element vertices, following the relationships
presented in [30, 32]. The quadrilateral patch, exemplified in
Fig. 2 (b), is interpolated in a similar way as the triangular
patch. Hence, the quadrilateral Nagata patch is given by:

S η; ζð Þ ¼ c00 þ c10ηþ c01ζ þ c11ηζ þ c20η
2 þ c02ζ

2 þ c21η
2ζ

þ c12ηζ
2; with 0≤η; ζ≤1;

ð7Þ

where the eight coefficient vectors cij are evaluated using the
position (x00, x10, x11 and x01) and normal vectors (n00, n10,
n11 and n01) of the finite element vertices through the rela-
tionships defined in [30, 32]. Note that the vertices defining
the finite element do not need to be coplanar.
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Bilinear facets

The traditional approach to model the tool surfaces, which
uses bilinear finite elements to describe the contact surfaces,
can be considered as a variant of the smoothing method
without recovering the curvature. In fact, in this study the
bilinear facets are defined through the Nagata patch interpo-
lation, imposing zero value to the coefficient c defined in
Eq. (5), which adds the curvature to the patch. This strategy
allows comparing both tool surface description methods in a
simple way, keeping the same discretization of the tool sur-
faces (number of facets/patches).

Interpolation methods accuracy

In order to highlight the geometrical improvements attained
with theNagata smoothingmethod over the faceted description,
a 2D simple example is selected to assess the accuracy of the
shape and the orientation of the normal vector. This section
compares briefly the accuracy of the Nagata patch interpolation

with the linear interpolation, using a circular arc. Two param-
eters are considered: (i) the radial error δr, which represents the
distance between the interpolated curve and the perfect circle,
measured in the radial direction and (ii) the normal vector
orientation error δn, which stands for difference between the
direction of the normal vector obtained with the interpolation
curve and the direction of the normal vector to the perfect circle.

Figure 3 (a) presents the radial error distribution in a
circular arc with a central angle of 30° described by a single
curve, comparing both the linear and the Nagata interpolation
methods. Although the evolution of the radial error is roughly
similar for both interpolation methods, the maximum value
attained is completely different, which is located at the mid-
point of the curve. Note that the figure presents two different
scales since the order of magnitude in the results is not
comparable. It is about 3.5 % (inside the circular arc) in the
linear interpolation, while the Nagata interpolation presents a
maximum of only 0.06 % (outside the circular arc). The
distribution of the error in the normal vector orientation is
presented in Fig. 3 (b) for the same circular arc. The

(a) (b)
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03PFig. 1 Example of a Bézier

patch: (a) the vertices composing
the polygonal control net
definition; (b) the resulting patch
[27]
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Fig. 2 Nagata patch
interpolation: (a) triangular patch;
(b) quadrilateral patch
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discontinuity of the normal vector in the typical finite element
discretization with linear elements can be observed through
the higher error at the nodes. On the other hand, the
Nagata interpolation assures G1 continuity in the inter-
polated curve, since the normal vector error is zero at
the nodes, as shown in Fig. 3 (b). The maximum error
of the normal vector in the linear interpolation is 15° (always
half value of the arc central angle), whereas in the Nagata
interpolation is only about 0.2°, dictating the use of two
different scales to plot the results.

The evolution of the maximum error value in function of
the normalized arc length (ℓ/r), i.e. the discretization refine-
ment, is presented in Fig. 4. The range considered for the
normalized arc length is from 0.785 until 0.157, which corre-
sponds to dividing a quarter of circle from 2 to 20 equal
partitions, respectively. Figure 4 (a) presents the comparison

of the maximum norm of the radial error between the linear
and the Nagata interpolation, as function of the normalized arc
length. Considering the linear interpolation, the maximum
value of the radial error decreases quadratically with the
normalized arc length, while applying Nagata interpolation
the convergence rate is quartic [30, 32]. Fig. 4 (b) contains the
maximum normal vector error as function of the normalized
arc length, for both surface description methods. The error
decreases linearly when the linear interpolation is adopted,
while the Nagata interpolation method provides a cubic
convergence rate. These results confirm the weakness of
the typically finite element discretization in terms of
normal vector orientation, due to the well-known facetization
induced phenomenon.
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Fig. 3 Comparison between linear and Nagata interpolation applied to
circular arc with 30° of central angle: (a) radial error distribution; (b)
normal vector error distribution
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Contact search algorithm

The number of facets or patches required to define each tool
involved in the sheet metal forming process depends on the
geometric complexity of the model. The aim of the contact
search algorithm is to identify, for each node of the deformable
body candidate to establish contact, both the tool facet/patch
and the exact position where contact can occur. The contact
search algorithm must be simultaneously accurate and effi-
cient in order to quickly identify all potential contact zones
[33]. Thus, usually it is divided in two phases: global and local
search. The global search algorithm must select all potential
contact facets/patches, while the local contact search algo-
rithm must identify the position where the node will establish
contact. The main motivation for global contact search is to
minimize the number of operations of the local search algo-
rithm, which is usually computationally more expensive
[34, 35].

Global search

The first step of the global search algorithm involves the
association of a predefined set of tools to each deformable
node, based only on the orientation of each facet/patch out-
ward normal vector to the blank. This step is carried out
always at the beginning, whatever the tool surface description
method adopted. The contact search algorithm implemented
in DD3IMP for Bézier patches [26], which has been continu-
ously tested and optimized, exploits the special features of
Bézier patches to ensure proper and efficient contact detec-
tion. Detailed information about its particular features can be
found in Oliveira et al. [26]. Themain difference between both
types of parametric patches lies in the number of patches
needed to properly describe the tools geometry. Since the
Nagata patch is only a quadratic degree surface, typi-
cally it is necessary to use more Nagata patches to
attain the same accuracy as using Bézier. The same idea
is also valid when the tool surfaces are described by a
finite element mesh, which requires an amount of finite
elements much higher to attain the same geometric
accuracy, as can be observed in Fig. 4.

The global contact search algorithm for Bézier patches can
be divided in the following three steps: (i) construction of a
uniform grid of points on each patch; (ii) evaluation of the

def
x

( , )S

( , )n

tool
u

nd
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x

Fig. 5 Orthogonal projection of a generic node of the deformable body
on a patch composing the tool surface
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Fig. 6 Scheme of the
unconstrained cylindrical bending
setup, including tools dimension
in mm

Table 1 Elastic and plastic material properties of the HSS used in the
unconstrained cylindrical bending problem

Elastic proprieties Swift hardening
law σ ¼ K ε0 þ εpð Þn

Hill’48 yield
criterion

E=222 GPa K=645.3 MPa F=0.254

ν=0.30 ε0=0.0102 G=0.397

n=0.252 H=0.603

L=M=1.500

N=1.689
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distances between each node of the deformable body and the
grid points, and (iii) selection of ten Bézier patches to perform
the local contact search. The dimension of the grid is deter-
mined based on the maximum degree of the patch, while the

selection procedure in the third step is performed using the
minimum distance [26].

Concerning the Nagata patch tool surface description, the
global contact search algorithm was developed exploring its

Fig. 7 Forming tool surfaces
described by: (a) Bézier patches;
(b) Nagata patches; (c) coarse
mesh of faceted elements; (d) fine
mesh of faceted elements
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Fig. 8 Shape error distribution measured in the die profile applying both
the faceted and the smoothed tool surface descriptions
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Fig. 9 Punch force evolution in the unconstrained cylindrical bending
predicted with the presented tool surface description methods
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special features, such as the mesh connectivity and the coordi-
nates of the surface mesh vertices [29]. The selection of the
patches is based mainly in geometric considerations, which is
divided in three steps: (i) selection of a reduced number of closest
surface mesh vertices and application of inverse mesh

connectivity to select their corresponding patches; (ii) creation
of a uniform grid of points on each of the selected patches and
(iii) selection of the ten closest Nagata patches for local contact
search, based on the minimum distance between the candidate
node and the grid of points. The amount ofmesh vertices selected

1

disp 7 mm

disp 14 mm

disp 21mm

disp 28.5 mm

2

3

4

Fig. 10 Definition of the angles
between the two contact points
farthest from the centreline for
four different punch strokes,
using the tool surfaces described
by Bézier patches
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in the first step depends on the tool mesh topology, i.e. unstruc-
tured tool surface meshes require the selection of a higher num-
ber of vertices due to its irregular distribution. The dimension of
the grid used in the second step is determined following a similar
strategy, using the ratio between the maximum and minimum
edge length of each finite element in its definition. More details
about the algorithm and its numerical implementation can be
found in Neto et al. [29].

Local search

In frictional contact problems involving a significant
amount of sliding, the master/slave contact strategy
combined with the node-to-segment discretization tech-
nique are usually adopted [36]. Therefore, the aim of
the local search is to identify for each node of the
deformable body (slave node) its counterpart position
on the discretized tool surface (master segment).
Whatever the tool surface description method adopted,
the information provided by the global search is the set
of the ten closest patches and the local coordinates of
the closest grid point. Therefore, the orthogonal projec-
tion is applied to each patch, in order to minimize the
distance between the node and the reference position
[37], as shown in Fig. 5. Hence, for each node of the
deformable body xdef, the implicit coordinates of the

reference position xref and the normal distance dn are evaluat-
ed by solving the following system of equations:

FProj η; ζ; dn
� 	 ¼ S η; ζ

� 	þ utool þ dnn η; ζ
� 	

−xdef ¼ 0;

ð8Þ
where S(η,ζ) represents any point on the selected patch, utool is
the tool displacement from the beginning until the actual posi-
tion and n(η,ζ) is the outward patch normal. Since the patch
definition and its outward normal vector are non-linear func-
tions of the parametric coordinates (η,ζ), an iterative method is
mandatory to solve the problem. The Newton–Raphson algo-
rithm is used to solve this system of equations, where the initial
solution is defined by the closest grid point. The system of
equations is solved for each patch preselected in the global
contact search, and in case of multiple solutions, the solution
with the minimum normal distance value is selected [26,38].

Numerical examples

In order to quantify the effect of tool surface descriptionmethod
in the numerical results provided by the finite element analysis
of the sheet metal forming process, two examples are studied in
this section. The first one is the unconstrained cylindrical
bending, proposed as benchmark of the Numisheet 2002 con-
ference [39]. The other one is the reverse deep drawing of a
cylindrical cup, proposed as benchmark at the Numisheet 1999
conference [40]. Although these two forming processes involve

Table 2 Predicted angles between the two contact points farthest from
the centreline for four different punch strokes, as well as the angle before
and after springback, for the different tool surface description methods

Angle Bézier Nagata Faceted-coarse Faceted-fine

θ1 18.4 18.4 20.0 19.7

θ2 60.9 61.7 56.7 62.9

θ3 109.4 110.4 106.5 112.5

θ4 155.3 155.7 155.9 155.6

β1 20.7 20.7 20.7 20.8

β2 35.2 35.0 33.6 34.9

(a) (b)

1

2

β

βFig. 11 Deformed shape of the
sheet in the unconstrained
bending problem and angle
definition: (a) after forming; (b)
after springback

Table 3 Computational efficiency of the unconstrained cylindrical bend-
ing numerical simulation using different tool surface description methods

Bézier Nagata Faceted-coarse Faceted-fine

Nº increments 338 342 517 447

Nº iterations 3994 3918 4839 4439

CPU time [minutes] 94.6 94.5 112.1 95.1
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quite simple tool geometries, the results show that they can be
effectively used to compare the presented surface description
methods. All simulations were carried out with DD3IMP finite
element code in a computer equipped with Intel® Core™ i7-
2,600 K (3.4 GHz) CPU and the Windows7 Professional (64-
bits platform) operating system.

Unconstrained cylindrical bending

The unconstrained cylindrical bending of a high strength steel
sheet, proposed as benchmark at the Numisheet 2002 confer-
ence [39] to evaluate the springback prediction, is illustrated
in Fig. 6. The initial rectangular blank presents 120 mm of
length and 30mm of width, while the sheet thickness is 1 mm.
The rolling direction is aligned with the length direction and
the tool dimensions are indicated in Fig. 6. The friction
coefficient between the blank and the tools is taken as μ=
0.148. The elastic and plastic properties of HSS are listed in
Table 1. Due to geometric and material symmetry conditions,
only one quarter of the model is simulated. The blank is
discretized with an unstructured mesh composed by 19950
trilinear hexahedron solid finite elements, using three layers in
the thickness direction. Since this example involves complex
contact conditions due to linear contact at the die radius,
unstructured blank meshes are favoured [41].

The tool surfaces are described using the three methods
presented in the paper, creating two models for the faceted
surface description, one with a coarse mesh and another with a
fine mesh, as shown in Fig. 7. The geometrical accuracy of the
tool surfaces models is evaluated through the shape error,
which is defined as the distance between approximated and
exact (CAD model) definition of the surfaces. Figure 8 pre-
sents the comparison of the shape error distribution obtained
with the fine mesh of facets and the Nagata smoothing meth-
od. Although the tool model composed by facets uses 30 finite
elements to describe each arc of circle section (see Fig. 7 (d)),
in opposition to only 4 Nagata patches in the smoothing
method (see Fig. 7 (b)), the maximum shape error value
(9 μm) is reached by the faceted tool surface description.
Moreover, the error in the normal vector direction present in
the faceted tool model is approximately 1.5°, while in the
Nagata smoothing method it is inferior to 0.1°, as shown in
Fig. 4 (b). The comparison of the punch force evolution
obtained with the different tool surface description methods
is shown in Fig. 9. Concerning the faceted tool surface de-
scription, the mesh refinement (i.e. increase of the number of
facets used) reduces the oscillations in the punch force evolu-
tion. Nevertheless, only the smoothing method with Nagata
patches and the tool definition using Bézier patches leads to a
force evolution with irrelevant oscillations, as can be observed
in the zoom view of Fig. 9. The angles between two contact
points that are the farthest from the centreline at 7, 14, 21 and
28.5 mm of punch stroke are illustrated in Fig. 10, for the tool

surfaces described by Bézier patches. The predicted values of
these angles are presented in Table 2 for all tool surface
description methods analysed. Only the faceted tool surface
description with the coarse mesh (see Fig. 7 (c)) gives dissim-
ilar results to the ones obtained with the other models.
Nevertheless, the angles predicted with the tool surfaces de-
scribed by Nagata patches are closer to the one obtained when
applying Bézier patches. The amount of springback is evalu-
ated through the angles measured after forming at the maxi-
mum punch displacement and after springback, which are
defined in Fig. 11. Table 2 contains the predicted angles values
for the four tool models considered in this study. While the
angle after forming is rather insensitive to the tool surface
description method, after springback the use of the coarse
mesh in the faceted model provides a lower springback
angle. Indeed, after forming the sheet is enclosed be-
tween the tools, which dictate its geometry. On the
other hand, after springback the stress field produced
during the forming process is replicated in the final
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Fig. 12 Increment size evolution with the punch displacement for the
unconstrained cylindrical bending problem

Table 4 Elastic and plastic material properties of the DDQ steel used in
the reverse deep drawing problem

Elastic
proprieties

Swift hardening
law σ ¼ K ε0 þ εpð Þn

Hill’48 yield
criterion

E=210 GPa K=568.3 MPa F=0.3137

ν=0.30 ε0=0.0059 G=0.3663

n=0.233 H=0.6337

L=M=1.500

N=1.1764

558 Int J Mater Form (2015) 8:549–565



shape, where the accuracy of the tool surface descrip-
tion is an important variable [13].

Concerning the computational efficiency, the total number
of increments and equilibrium iterations as well as the CPU
time are compared in Table 3. The number of increments
decreases with the mesh refinement in the faceted tool surface
description, which is always lower for the Nagata and Bézier
description methods. The same trend is observed for the total
number of equilibrium iterations. Regarding the CPU time,
only the coarse mesh composed by facets requires more
computational time, which is about 20 % higher than the
one required by the other models. Figure 12 presents the
increment size evolution with the punch displacement. Since
an rmin strategy [41, 42] is implemented to automatically limit
the increment size in order to improve convergence, the real
increment size can be inferior to the one defined in input (in
this case 0.114 mm). This automatic reduction is more evident
for the faceted tool surface description method, mainly for a
punch displacement higher than 20 mm. In fact, by adopting a
smoothed tool surface description (Nagata or Bézier), most of
the increments present the size imposed as input (see Fig. 12).
Note that the difference between Nagata and Bézier tool

surface description methods is very small for all parameters
analysed, while the construction of the tool model with Nagata
patches is simplest and easier.

Reverse deep drawing of a cylindrical cup

The second example analysed is the reverse deep drawing
process of a cylindrical cup, proposed as benchmark at the
Numisheet’99 conference [40]. The circular blank has

Fig. 13 Forming tools adopted in
the reverse deep drawing using
the surfaces described by: (a)
Bézier patches; (b) Nagata
patches; (c) coarse mesh of
faceted elements; (d) fine mesh of
faceted elements

Table 5 Number of patches/facets used to describe each forming tool of
the reverse deep drawing problem

Tool Bézier Nagata Faceted-coarse Faceted-fine

Die 1 8 90 324 960

Blank-holder 1 2 15 60 180

Punch 1/Die 2 12 120 540 1680

Blank-holder 2 8 75 240 840

Punch 2 12 86 254 1012

Total 42 386 1418 4672
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170 mm diameter and 0.98 mm of initial thickness. The
material considered in this study is the mild steel DDQ,
characterized by the elastic and plastic properties listed in
Table 4. The friction coefficient between the sheet and the
tools is taken from the benchmark specifications as μ=0.15.
Due to geometric and material symmetry conditions, only one
quarter of the model is simulated, as shown in Fig. 13. The
blank is discretized with 8-node hexahedron solid finite
elements, using 2 layers through the thickness, making a
total of 15408 elements. The gap between the die and
the blank-holder is held fixed in both stages, which is
set equal to 1.13 mm in the first stage and 1.4 mm in
the second stage, in order to draw a cylindrical cup
without wrinkles [43, 44].

The three methods presented in the paper are used to
describe the tool surfaces, as shown in Fig. 13. Two models
for the faceted surface description (coarse and fine mesh) are
created. The model composed by Nagata patches uses 3
patches to describe each circular arc in the radial direction
(see Fig. 13 (b)), while in the faceted surface description
method 6 and 12 bilinear facets are applied for the coarse
and fine mesh (see Fig. 13 (c) and (d)), respectively. The total
number of patches or facets composing each tool model is

presented in Table 5. The shape error is selected to assess the
geometrical accuracy of the tool surfaces models, comparing
all surface description methods that are based on the
discretization of the tool surfaces. Figure 14 presents the shape
error distribution on the tool surfaces described by Nagata
patches. The maximum positive error appears in the hyper-
bolic surface of the die, while the maximum negative error
occurs in elliptic surface of the punch 2. Nevertheless, the
shape error ranges from −6.2 to 9.6 μm, thus the maximum
value attained always inferior to 10 μm. The comparison of
the shape error distribution obtained with the faceted tool
surface description for the coarse and fine mesh is presented
in Fig. 15 and Fig. 16, respectively. Although the finer tool
model composed by facets uses muchmore facets than Nagata
patches to describe the contact surfaces (see Table 5), the
maximum error value reached is approximately twice than
using Nagata patches. Moreover, the sudden variation of the
shape error within each facet, which can be observed in
Fig. 15 and Fig. 16, combined with small size facets leads to
a higher error in the normal vector direction.

The comparison of the predicted punch force evolution
using different tool surface description methods is presented
in Fig. 17 and Fig. 18, for the first and second forming stage,
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Fig. 15 Shape error distribution on the tool surfaces described by bilinear
facets, adopting a coarse mesh
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respectively. The effect of the tool surface accuracy can be
observed in both forming stages. Nevertheless, it is more
emphasised during the second stage due to the lower value
of the die radius. Regarding the faceted tool surface

description, the increase of the number of facets reduces the
oscillations in the punch force evolution. However, only the
surface smoothing method with Nagata patches and the tools
defined by Bézier patches lead to a force evolution with
reduced oscillations, as can be observed in the zoom view of
Fig. 17 and Fig. 18. The equivalent plastic strain distribution
at the end of the second stage is presented in Fig. 19, for each
tool surface description method. Both the Bézier and Nagata
patches applied in the tool surface description lead to identical
results, presenting in Fig. 19 (c) only the distribution obtained
with Nagata patches. Indeed, the equivalent plastic strain
predicted using the tool surfaces defined by facets is consid-
erable different from the one obtained with smooth patches,
particularly when adopting the coarser mesh. The evolution of
the number of nodes in contact with the die, for each forming
stage, is presented in Fig. 20 for each tool surface description
method. The higher number of nodes in contact predicted by
the tools modelled by Bézier patches is associated with the
excellent geometrical accuracy in the tool surfaces definition.
On the other hand, the faceted description provides a lower
number of nodes in contact, particularly in the first stage (see
Fig. 20 (a)), due to the artificial roughness induced in the
contact surface. In fact, the mesh refinement performed in
the tool surface description is more effective in the second
stage than in the first one, as can be seen in Fig. 20. This is a
consequence of the lower value of the die radius in the second
stage and the absence of the planar surface (compare the shape
error distributions for Die 1 and Punch 1/Die 2, in Fig. 15 and
Fig. 16).

The computational efficiency of the numerical simulations is
evaluated in this study through the number of increments, total
number of equilibrium iterations and the CPU time, which are
compared in Table 6. The required number of increments
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decreases slightly with the mesh refinement in the faceted
tool surface description. This is directly related with the error
in the normal vector of the discretized tool surfaces, which
decreases only linearly with the mesh refinement, as shown
Fig. 4 (b). On the other hand, the smooth tool surface
descriptions (Bézier and Nagata) require approximately half
the number of increments to complete the simulation.
Identical behaviour is observed for the total number of
equilibrium iterations. Figure 21 presents the increment size
evolution with the punch displacement for both forming
stages. The reduction in the increment size defined by the
rmin strategy is more emphasised for the faceted tool surface
description method (coarse and fine mesh) due to the sudden
changes in the surface normal vector direction, when the
sheet slides over the tool surfaces. Concerning the Bézier
and the Nagata patch surface description methods, its incre-
ment size evolution is analogous, as shown in Fig. 21. The
total CPU time is mainly dictated by the number of incre-
ments required to perform the simulation. Therefore, the
computational time required to carry out the numerical sim-
ulation using the faceted tool surface description is approx-
imately twice of the one required when a smooth surface
description is adopted, as shown in Table 6. Although the
total number of Nagata patches used in tool surface descrip-
tion is higher than the number of Bézier patches (see
Table 5), the required CPU time to complete the simulation
is slightly lower when applying Nagata patches. The same
trend is observed for the total number iterations and incre-
ments. This behaviour can be associated with the high
interpolation degree used in some Bézier patches, which
can create instabilities in the local search.

(a) (b) (c)

pεFig. 19 Equivalent plastic strain
distribution at the end of 2nd
stage, using tool surfaces
described by: (a) faceted coarse
mesh; (b) faceted fine mesh; (c)
Nagata patches
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Table 6 Computational efficiency of the reverse deep drawing numerical
simulation using different tool surface description methods

Bézier Nagata Faceted-coarse Faceted-fine

Nº increments 1917 1788 4248 4103

Nº iterations 12925 12460 25939 24103

CPU time [hours] 3.62 3.28 6.41 6.01
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Conclusions

This paper presents the comparison of three different tool
surface description methods used in the numerical simulation
of sheet metal forming processes. The contact surfaces in-
volved in the finite element analysis are defined using: (i)
Bézier patches obtained from the CAD model, (ii) Nagata
patches as result of surface mesh smoothing and (iii) bilinear
facets, inherent to the use of the traditional finite element
surface discretization. The contact search algorithm, which is
divided in two phases: global and local search, is briefly

presented for each tool surface description method. The influ-
ence of the tool model accuracy on the numerical analysis is
established through two examples: the unconstrained cylin-
drical bending and the reverse deep drawing of a cylindrical
cup.

The surface description method that resorts to Nagata
patches leads to significant improvements in terms of geomet-
ric accuracy of the tool surfaces, in comparison with bilinear
finite element meshes. Moreover, the surface normal vector is
quasi-continuous when applying Nagata patches, which is
discontinuous in the faceted surface description. Therefore,
the simulation results are largely affected by the surface
discretization when bilinear facets are used, creating
unphysical oscillations in the punch force evolution.
Besides, the predicted equivalent plastic strain distribution is
overestimated due to the artificial roughness created. On the
other hand, the use of Nagata patches allows obtaining an
accurate tool definition without drastically increasing the
number of patches. Concerning the computational efficiency,
the smooth description of the tool surfaces is much more
advantageous than the facets, particularly due to the normal
vector accuracy. Indeed, for the example involving large slide
of the sheet over the tools, both the total number of increments
and the CPU time required to complete the numerical simula-
tion when using the faceted tool surface description is approx-
imately twice of the one required by the models using a
smooth surface description. These results show that the de-
scription of the tool surfaces using Nagata patches provides
accurate results, while requiring smaller computational time.
Moreover, the construction of Nagata patch tool models is
simplest and easier than the one based in Bézier patches,
which is dependent of the CAD software.
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