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a b s t r a c t

This paper presents an algorithm to accurately evaluate the surface normal vector in any vertex of a finite
element mesh, in order to be able to efficiently apply the Nagata patch interpolation as surface mesh
smoothing method when solving contact problems. The proposed algorithm considers that the surface
geometry is also described by trimmed NURBS surfaces, with input data available in IGES file format. For
each mesh vertex, the proposed approach comprises the following three steps: surface global search,
local search, and normal vector evaluation. In the global search procedure, all trimmed NURBS surfaces
composing the geometric model are ordered by proximity to the vertex. After that, local search is
performed to find both the correct NURBS surface and the local coordinates of the vertex, which are
defined by its projection on the selected surface. The vertex normal vector is them determined based on
the first derivatives of the NURBS surface at the projection point. To highlight the feasibility of the
developed algorithm, a mesh smoothing example is presented, emphasising the influence of the vertex
normal vector approximation on the interpolation accuracy.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The application of the Finite Element Method (FEM) in the
numerical simulation of sheet metal forming processes requires,
among other parameters, the geometric description of the tools
involved. Typically, the forming tools can be considered as rigid,
which allows to describe them using only their exterior surfaces
[1–6]. The numerical treatment of the contact with friction
between the deformable body and the tools is a rather compli-
cated task in the field of computational mechanics, due to the
strong nonlinearities involved and the non-smooth behaviour of
the contact and friction laws [7,8]. The selected tool surface
description scheme dictates the way to evaluate the kinematic
variables, which are responsible for measuring the relative motion
between the sheet and the tools, in order to accurately enforce the
frictional contact constraints in the numerical procedure. The
approach proposed by Laursen and Simo [7] is one of the most
commonly used to evaluate the kinematic variables, since it uses
the local coordinate system of the tool surfaces. The identification
of the reference position on the tool surface, for each node
candidate to contact, is performed through the so-called global
and local contact search algorithms [1,9]. In the global contact
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search, the candidate surfaces are selected in order to minimise
the computational cost of the local contact search, where the
closest point projection of the each node onto the correct tool
surface is achieved, to subsequently assess the kinematic variables.

In sheet metal forming processes, the methods adopted to
describe the tools are commonly divided into: (i) analytical func-
tion, (ii) parametric patch and (iii) piecewise linear mesh [1,10].
The first tool description scheme is geometrically very accurate
and the associated contact search algorithm is simple and efficient.
However, it can only be applied for tools with simple geometries.
The tools described with parametric patches, such as Gregory [11],
Bézier [3,4], Spline [5,12,13] and Non-Uniform Rational B-Spline
(NURBS) [14], provide a smooth description of the surfaces, which
can attain C2 continuity. However, these patches are characterised
by high order interpolation degree, leading to high computational
cost in the contact treatment due to the high number of operations
involved in both the local contact search procedure and the kine-
matic variables evaluation [11,15]. Hence, most of FEM codes resort
to piecewise linear mesh scheme for surface description due to its
wide application to many types of contact problems, ability to
describe complex geometries and simplicity of the contact search
algorithms [2,16]. Nevertheless, in order to attain accurate tool
descriptions, this method requires a very high density of elements
in curved contact zones. Furthermore, the artificial non-smoothness
of the resulting contact surfaces leads to non-physical oscillations of
the contact forces and can result in convergence problems during the
iterative procedure. Therefore, a way to overcome these problems is
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combining an interpolation method with the piecewise linear mesh
scheme in order to smooth the mesh with parametric patches,
leading to significant improvements both in the tool model accuracy
and in the convergence behaviour [4,11,14]. One possible interpola-
tion method is the one proposed by Nagata [17]. The Nagata patch
interpolation algorithm is a simple method used to smooth finite
element meshes, which requires the knowledge of the surface
normal vector in each vertex of the surface mesh [17,18]. However,
the information about the normal vectors is unavailable in the typical
piecewise mesh files, which contain only the vertices positions and
the connectivity of each finite element. In computer graphics and
vision science, the strategy commonly adopted to estimate the
normal vector in each vertex of the surface mesh is based on the
weighted sum of the normal vectors of the facets sharing that vertex
[19–21]. The results obtained with this strategy present some errors
that are difficult to evaluate, since the correct normal vector is
usually inaccessible. It is known that these errors tend to be higher
both for coarse and unstructured meshes [19,21]. However, from the
user point of view, these kind of meshes are the most attractive to
use in numerical simulation since they are fast and easily obtained
using automatic generation. Typically the Computer-Aided Engineer-
ing (CAE) engineer starts the analysis based on the Computer-Aided
Design (CAD) model with the tool design to be used in the numerical
simulation. Then, this CAD model is used to generate the tool surface
mesh, which is subsequently used in the numerical model. The idea
behind this work is to evaluate the surface normal vectors, using the
geometric information available in the CAD model, in order to
accurately employ the Nagata patch interpolation as smoothing
method in the contact with friction problems formulation.

Among the CAD data exchange neutral formats, presently the
Initial Graphics Exchange Specification (IGES) file format is the
most widely used, to transfer information between CAD and CAE
software packages. It contains all the information required to the
mathematical definition of the geometry and is organised in a
structured manner, following a standard specification [22]. The
geometry information is represented in the form of trimmed
NURBS surfaces, which is the most general parametric surface
description method adopted in CAD [15,23]. NURBS are the
standard for surface modelling in most of computer graphics and
CAD systems, since many of the typical surface forms used, such as
flat planes and quadric surfaces (e.g. cylinders, spheres, ellipsoids
of revolution) as well as more complex surfaces, are easily and
accurately represented by them [23].

This paper presents an algorithm to evaluate the surface normal
vector in each vertex of a piecewise mesh, which is based on the
projection of the vertex in the corresponding NURBS surface, defined
based on the information available in the IGES file. A brief review of
the Nagata patch interpolation method is presented in Section 2, as
well as the influence of the normal vector in the interpolation accuracy
when applied to a circular arc. Section 3 contains a brief mathematical
description of trimmed NURBS surfaces, as well of the IGES file format
organisation and description of the entities required to define each
surface of the model. Section 4 presents the algorithm to evaluate the
normal vector in each mesh vertex, which is divided in a global search
procedure for trimmed NURBS surfaces, followed by an orthogonal
projection of the vertex on the surface. A numerical example of
smoothing a piecewise linear mesh with Nagata patches is presented
in Section 5, highlighting the feasibility of the proposed algorithm.
2. Nagata patch interpolation

The Nagata patch is a quadratic parametric interpolator for
piecewise meshes [17]. The minimum interpolation degree used to
represent a curve, accompanied with its local interpolation structure,
leads to a reduced cost in the frictional contact treatment [11,24].
Furthermore, the quasi-G1 continuity attained between patches
guarantees a smooth transition of contact forces when nodes slide
across patch boundaries [25]. The recognised drawback associated
with the applicability of smoothing methods to 3D unstructured
meshes is completely overcome using the Nagata interpolation, since
it can be applied both to structured and unstructured surface meshes.
In fact, the criteria considered required to develop an appropriate
interpolation method for contact surface smoothing, according to
[11], are entirely fulfilled by Nagata patch, being this a promising
interpolation method to be applied in computational contact
mechanics [18,25].

The Nagata patch interpolation algorithm recovers the curvature
of surfaces with good accuracy using the position and normal vectors
of each vertex of the piecewise model. The mesh refinement
increases the accuracy achieved by the Nagata surface description.
In fact, for some geometries (e.g. spherical and cylindrical), the
maximum interpolation shape error presents quartic convergence
with the mesh size [17,26]. The interpolation of an edge is given by
the following curve:

CðξÞ ¼ x0 þ ðx1−x0−cÞξþ cξ2; ð1Þ
where ξ is the local coordinate of the curve, which satisfy the
condition 0≤ξ≤1. The position vector of each edge end point is
given by x0 and x1, while its unit normal vectors are given by n0 and
n1, respectively. The coefficient c, which adds the curvature to the
edge is determined as:

cðx0; x1;n0;n1Þ ¼

½n0 ;n1 �
1−a2

1 −a
−a 1

� � n0⋅ðx1−x0Þ
−n1⋅ðx1−x0Þ

( )
ða≠71Þ

½n0 ;7n0�
2

n0⋅ðx1−x0Þ
∓n0⋅ðx1−x0Þ

( )
¼ 0 ða¼ 71Þ

;

8>>>>><
>>>>>:

ð2Þ
where a¼ n0⋅n1, is the cosine of the angle between the normal
vectors and ½n0;n1� represents a matrix with the first column equal
to vector n0 and the second one equal to vector n1. The above
formulation, described for an edge, can be easily extended to general
n-sided patches, such as triangular and quadrilateral patches. These
patches can be employed together in order to easily build geome-
trically complex models, exploiting the surface mesh generator
features to generate a mesh composed by both triangular and
quadrilateral finite elements. Regardless of the mesh typology, the
information necessary to define a Nagata patch is only the surface
normal vector in each vertex of the mesh, providing the local support
of the interpolation. For more details about the formulation of the
patches, the reader should refer to [17,26]. Some improvements to
the original Nagata interpolation have been recently proposed by
[26] in order to increase its robustness when applied in the contact
surface description. The global idea is avoid the generation of very
sharp surfaces, situation that can arise due to the quadratic inter-
polation degree.

The procedure to smooth discretised surfaces using the Nagata
patch interpolation can be divided in three sequential steps: surface
mesh generation, evaluation of the normal vector in each vertex and
Nagata patch interpolation. Concerning the evaluation of the normal
vectors, two strategies can be followed: (i) the one proposed in this
study or (ii) using only the nodes position and the connectivity of the
mesh (recommended only if the CAD geometry is unavailable). Since
the second strategy uses less information, it is less accurate [26].

2.1. Influence of the normal vectors in the interpolation accuracy

The application of Nagata patches to smooth the contact sur-
face description requires only the knowledge of the surface normal
vector in each vertex of the piecewise linear mesh, being this the



Fig. 2. Effect of the normal vector perturbation δn in the maximum jδRj value
attained in the Nagata interpolation of several circular arcs defined by the central
angle θ.
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Fig. 3. Procedure for extracting trimmed NURBS surfaces from a CAD system
through neutral IGES file format.
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only variable that influences the interpolation accuracy for a
specific mesh. In this section the circular arc geometry is analysed,
in order to study the influence of the normal vectors accuracy in
the interpolation error. Several circular arcs with different arc
lengths are used to quantity the radial error attained by the Nagata
interpolation, when inducing a perturbation in the vertex normal
vector. Considering a circular arc of radius R, the radial error of its
interpolation is defined as follows:

δRðξÞ ¼
~RðξÞ−R

R
� 100%; ð3Þ

where ~RðξÞ is the local radius of the arc resulting from the Nagata
interpolation and ξ is the local coordinate of the curve, as defined
in Eq. (1). Note that this radius is not constant in all arc length,
presenting always the value R at the ends of curve (points x0 and
x1), as shown in Fig. 1. The interpolated arc is totally defined by
means of Eqs. (1) and (2), being the input data composed by the
position vector and unit normal vector in each end point of the
circular arc.

Since the length of the circular arc to be interpolated influences
the accuracy of the Nagata interpolation, this is indirectly defined
through the central angle θ indicated in Fig. 1. The six central
angles used in this study (51, 101, 151, 201, 301 and 401) were
selected taking into account the typical arc length range obtained
from the discretisation of curved contact surfaces with piecewise
meshes. For this simple geometry, the normal vectors necessary to
the interpolation can be deduced from the analytical function of
the circular arc. The influence in the Nagata interpolation accuracy
of a small perturbation δn in the analytical normal vector is studied
considering that the perturbations imposed are always applied
symmetrically, i.e. the perturbation applied to the normal vector
n0 presents the same amplitude and opposite direction to the one
applied in the normal vector n1. This symmetry is shown in Fig. 1,
as well as the definition of the positive direction for the perturba-
tion δn. The interpolation accuracy is measured through the
maximum norm of the radial error attained by the Nagata
interpolation. Fig. 2 presents the effect of the perturbation induced
in the analytical normal vector on the maximum norm of the
radial error jδRj, for the six predefined central angles. The range of
perturbation is limited in the present analysis between �4.51 and
3.51, since its behaviour is nearly linear for jδnj411 (see Fig. 2). For
positive values of perturbation, the maximum value of jδRj
increases both with the central angle θ and with the perturbation
amplitude. Since the radial error of the Nagata interpolation of a
circular arc using analytical normal vectors is always positive (see
Fig. 1), the increase of the perturbation amplitude in the negative
direction leads to a transition of the radial error between positive
and negative values. This transition is identified in the error
evolution through the lower value attained by the maximum
value of jδRj, which occurs for values of perturbation slightly
negatives. In fact, as it is shown in Fig. 2, the radial error observed
n

R

R

n

x x
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Fig. 1. Schematic representation of the influence of the normal vectors in the
Nagata interpolation applied to a circular arc.
in the Nagata interpolation of a circular arc when applying the
analytical normal vectors is not the lowest possible. However, as it
is shown also in the figure, the Nagata interpolation radial error
obtained with the analytical normal vectors tends to the minimum
when the circular arc length decreases. Although, the error
analysis performed in this section is limited to a simple geometry,
since it requires the analytical evaluation of the vertex normal
vectors, it highlights the importance of an accurate evaluation of
the vertex normal vectors, particularly for coarse piecewise
meshes. However, in more complex shapes or 3D complex geo-
metries, it is not possible to evaluate analytically the surface
normal vector. In those cases, the recommended strategy is to
use the CAD geometry, when available.
3. Trimmed NURBS surfaces and IGES file format

Today there are many CAD software packages available in the
market, using all different types of data file formats. However,
these software packages also support neutral CAD data file
exchange formats, which are used to transfer data between
different CAD systems and also with other applications. The two
most important and powerful neutral formats are Initial Graphics
Exchange Specification (IGES) and STandard for the Exchange of
Product model data (STEP). It is commonly stated that the IGES
file format is preferable for exporting 3D surface models, while
the STEP file format should be adopted for transferring 3D solid
models [27–29].

Meanwhile, the most general and advanced parametric surface
description method in CAD systems is the NURBS, due to its
generality and excellent properties [23,30]. Nevertheless, most of
3D surface models are composed by trimmed NURBS surfaces,
which result from the intersection between adjacent basis NURBS
surfaces (i.e. surfaces with a rectangular parametric mapping). The
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trimmed NURBS surfaces are increasingly used in CAD and
computer graphics due to the high flexibility required to represent
complex models [15,31,32]. All information needed to define each
trimmed NURBS surface, present in the geometric model, is
available in the IGES file format. This information is stored in
separated geometry entities following the IGES specification. Fig. 3
shows a flowchart with the procedure used to extract the trimmed
NURBS surface definition from a general CAD system by means
of the IGES file format. The following subsections describe the
parameters involved in the trimmed NURBS definition and the
way this information is organised in the file, i.e. IGES specification
[22].

3.1. Trimmed NURBS surfaces

A trimmed NURBS surface is a basis NURBS surface bounded by
a set of trimming curves, which resulted from the intersection
with neighbouring surfaces, as schematically shown in Fig. 4.
Although the trimming curves can be of any form, when dealing
with NURBS entities it is recommended to also represent them in
NURBS form [15]. The detailed mathematical description of NURBS
surfaces can be found in the literature e.g. [23]. A basis NURBS
surface of degree ðp; qÞ has the following form:

Sðu; vÞ ¼
∑n

i ¼ 0∑
m
j ¼ 0Ni;pðuÞNj;qðvÞwi;jPi;j

∑n
i ¼ 0∑

m
j ¼ 0Ni;pðuÞNj;qðvÞwi;j

; us≤u≤ue and vs≤v≤ve;

ð4Þ
where Pi;j is the position vector of the ðnþ 1Þðmþ 1Þ� �

control
points, which form a bidirectional control net, and wi;j is the
weight of each control point. The Ni;pðuÞ and Nj;qðvÞ are the non-
rational B-spline basis functions of degree p and q, respectively,
defined over the following knot vectors:

U¼ us;…; us|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

; upþ1;…; ur−p−1; ue;…; ue|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

8><
>:

9>=
>;; ð5Þ

V¼ vs;…; vs|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qþ1

; vqþ1; :::; vs−q−1; ve;…; ve|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qþ1

8><
>:

9>=
>;; ð6Þ

where r¼ nþ pþ 1 and s¼mþ qþ 1. The most usual way to
define the B-spline basis functions is through the Cox-de Boor
recursion formula [33,34]. For the case of the u parametric
coordinate, the ith B-spline basis function of degree p is defined as:

Ni;0ðuÞ ¼
1 if ui ≤u≤uiþ1

0 otherwise
;

�

Ni;pðuÞ ¼
u−ui

uiþp−ui
Ni;p−1ðuÞ þ

uiþpþ1−u
uiþpþ1−uiþ1

Niþ1;p−1ðuÞ ; ð7Þ
where ui are elements of the knot vector (Eq. (5)) called knots,
which satisfy the relation ui ≤uiþ1.

Considering that a NURBS surface is bounded by a set of M
trimming curves and all of them are NURBS curves, the kth trimming
NURBS curve, with degree lk, presents the following form [23]:

CkðtÞ ¼ ∑hk
i ¼ 0Ni;lk ðtÞwk

iP
k
i

∑hk
i ¼ 0Ni;lk ðtÞwk

i

; tsk ≤t≤tek; k¼ 1;…; M; ð8Þ

where Pk
i are the position vectors of the hk þ 1

� �
control points and

wk
i is the weight of each control point. The knot vector, required to

evaluate the non-rational B-spline basis function Ni;lk ðtÞ, is defined as:

Tk ¼ tsk;…; tsk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lkþ1

; tklkþ1;…; tkgk−lk−1; t
ek;…; tek|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

lkþ1

8><
>:

9>=
>;; ð9Þ

where gk ¼ hk þ lk þ 1. Therefore, in order to define a trimmed
NURBS surface it is necessary to know all the parameters defining
the basis NURBS surface as well as the M trimming curves.
3.2. IGES file format

The purpose of this section is to provide a direct link between
the mathematical parameters presented in Section 3.1 and the
information included in the IGES file format. The neutral IGES file,
an American National Standard (ANS) format, is actually the most
widely used format for exchanging product data among all
important CAD/CAM/CAE systems [15]. This neutral file supports
three types of data exchange formats: (i) fixed line length ASCII,
(ii) compressed ASCII and (iii) binary [22]. Although CAD systems
usually preserve transcript files in a binary format, the most
commonly used format for data transfer is the fixed line length,
where the entire file is divided into lines of 80 characters [15,27].
Therefore, in this study all information required for each trimmed
NURBS surface definition is extracted from this type of format. This
IGES format is partitioned into five sequentially numbered main
sections, organised in the following order:
�
 Start section (S);

�
 Global section (G);

�
 Directory entry section (D);

�
 Parameter data section (P);

�
 Terminate section (T).
The columns from 1 to 72 comprise the information which
varies according to the file current section, which is identified in
column 73 by the letter (S, G, D, P or T), previously specified in
brackets. The remainder columns (74–80) contain the line num-
bers of every file section.
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The start section (S) usually contains, in human readable free-
form, comments of the sender. In the global section (G) the general
file characteristics are presented, such as the parameter delimiter,
the record terminator used in the subsequent sections and the
units of the model. The default values for the delimiter and the
terminator parameters are the comma and the semi-comma,
respectively. In the present analysis, the information presented
in this section is ignored, except the delimiter and the terminator
parameters. The directory entry section (D) contains two conse-
cutive lines to define each entity. This section provides the pointer
to the parameter data section (P) containing the information for
each entity. In fact, the most important information extracted from
the directory entry section (D) is both the first line number and the
total number of lines used, in the parameter data section (P), for
describing each entity present in the IGES. The parameter data
section (P) always starts with the identification of the entity
number, followed by the complete information about all para-
meters associated with the entity. Finally, the terminate section
(T) comprises a single line describing the number of lines
employed in each of the previous four sections [27].
3.2.1. Curve and surface geometry entities
The IGES 5.3 [22] describes about 88 different entities, which

can be categorised as geometry and non-geometry. The geometry
entities define the physical shape of a model including points,
curves, surfaces, solids and relations between entities. On the
other hand, the non-geometric entities specify annotation, defini-
tion and structure, providing attributes of entities such as colour
and status [29]. In the present study, only geometry entities are
required to collect the information necessary to define each
trimmed NURBS surface, used in the geometric model. Table 1
presents a brief description of the necessary five geometry entities,
as well as their identification number in the IGES specification. The
pathway followed to identify all mathematical parameters related
with trimmed NURBS surfaces is schematically shown in Fig. 5.
Thus, from the IGES file available in fixed line length format it is
possible to extract all the surface parameters, through the infor-
mation contained in the entities specified in Table 1. In order to
know the data arrangement within the file for these geometry
entities, a detailed description of each one is presented, following
the IGES specification.

The information presented in the rational B-Spline surface
entity (No. 128) corresponds to the basis NURBS surface definition,
described previously in Eqs. (4)–(6). In order to easily identify all
the numerical parameters involved in those equations, the infor-
mation associated with this entity, always presents the following
specification:

128;n;m; p; q;uc; vc;pr;up; vp;u0;u1;…;ur
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{U

; v0; v1;…; vs
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{V

;w0;0;w1;0;…;wn;m

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{wi;j

;

Px
0;0; P

y
0;0; P

z
0;0; P

x
1;0; P

y
1;0; P

z
1;0;…; Px

n;m; P
y
n;m; P

z
n;m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi;j

;us;ue; vs; ve;

Note that some numerical parameters existent in the above
specification are not used directly in the definition of a basis
Table 1
Description of the entities used to represent
trimmed NURBS surfaces [22].

Entity type Description

No. 128 Rational B-Spline surface
No. 126 Rational B-Spline curve
No. 102 Composite curve
No. 142 Curve on a parametric surface
No. 144 Trimmed parametric surface
NURBS surface (see Eqs. (4)–(6)). Hence, Table 2 presents a brief
description of all the parameters employed to describe the rational
B-Spline surface entity in the parameter data section. For more
detailed information please refer to IGES 5.3 [22]. The rational
B-Spline curve entity (No. 126) stores the information related with
the NURBS curves. The specification for this entity is the following:

126;h; l; cp; tc; pr; tp; t0; t1;…; tg
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{T

;w0;w1;…;wh
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{wi

;

Px
0; P

y
0; P

z
0; P

x
1; P

y
1; P

z
1;…; Px

h; P
y
h; P

z
h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi

; ts; te;nx;ny;nz;

The information arrangement in the curve definition is analo-
gous to the one used in the surface entity. In the same way, the
numerical parameters involved in Eqs. (8) and (9), which define a
general NURBS curve, can also be easily identified in the above
specification. The parameters used in the parameter data section
to define the rational B-Spline curve entity are presented in
Table 2, together with its brief description. All NURBS curves
composing the model are represented following the above speci-
fication. However, in case of a curve used to define the boundary of
a trimmed NURBS surface, its definition is presented in the IGES
file using two different domains. Hence, in addition to the
specification presented above, the same geometric curve is also
specified in the parametric domain of the basis NURBS surface,
which is trimmed by the curve. The main difference to the
previous specification is the domain where the control points are
defined. While in the above specification they are defined in the
Euclidean space ðPx

i ; P
y
i ; P

z
i Þ, in the second specification they are

defined in the parametric domain of the basis NURBS surface, as
following:

126;h; l; cp; tc; pr; tp; t0; t1;…; tg
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{T

;w0;w1;…;wh
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{wi

;

Pu
0 ; P

v
0; P

w
0 ; P

u
1; P

v
1; P

w
1 ;…; Pu

h ; P
v
h; P

w
h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi

; ts; te;nx;ny;nz;

Since the parametric domain of the surface is a 2D space, the
third coordinate of each control point is always zero Pw

i ¼ 0:0. Note
that the curve degree as well as the number of control points is not
obligatorily the same in the two specifications. This last specifica-
tion is the most useful to define the parametric domain of each
trimmed NURBS surface.

The remaining three entities contain only additional informa-
tion to define the relations between surfaces and curves, i.e.,
topological information [22]. The composite curve entity (No. 102)



Table 2
Description of the variables used in entity numbers 128 and 126.

Entity Variable Description

128

n/m
Number of control points less one in u/v parametric
direction

p/q Surface degree in u/v parametric direction

uc/vc
Closed (¼1) or open (¼0) surface in u/v parametric
direction

pr Polynomial (¼1) or rational (¼0) surface representation

up/vp
Periodic (¼1) or non-periodic (¼0) surface in u/v
parametric direction

U¼ u0 ;…;urf g Surface's knot vector in u parametric direction (see Eq. (5))
V¼ v0 ;…; vsf g Surface's knot vector in v parametric direction (see Eq. (6))
wi;j ¼ w0;0 ;…;wn;m

� �
Weight associated to each control point

Pi;j ¼ P0;0 ;…;Pn;m
� �

Position vector of each control point
us/vs Starting value of u/v in the surface definition (see Eq. (4))
ue/ve Ending value of u/v in the surface definition (see Eq. (4))

126

h Number of control points less one
l Curve degree
cp Planar (¼1) or not planar (¼0) curve
tc Closed (¼1) or open (¼0) curve
pr Polynomial (¼1) or rational (¼0) curve representation
tp Periodic (¼1) or non-periodic (¼0) curve
T¼ t0;…; tg

� �
Curve's knot vector (see Eq. (9))

wi ¼ w0 ;…;wh
� �

Weight associated to each control point

Pi ¼ P0 ;…;Ph
� �

Position vector of each control point
ts Starting value of t in the curve definition (see Eq. (8))
te Ending value of t in the curve definition (see Eq. (8))
nx ;ny;nz Unit normal (if curve is planar)

Table 3
Description of the variables used in entity numbers 102, 142 and 144.

Entity Variable Description

102 nsc Number of simple curves composing the composite curve
sci Line number of the i simple curve (i¼ 1;…; nsc)
wc The way the curve on the surface was created
se Pointer to the surface on which the curve lies

142 ccuv Pointer to the composite curve defined in the parametric domain
ccxyz Pointer to the composite curve defined in the Euclidean space
rep Preferred representation in the sending system
se Pointer to the surface that is to be trimmed
tr Trimmed (¼1) or untrimmed (¼0) surface definition

144 ncci Number of closed curves defining the inner boundary of the trimmed surface
cpsob Pointer to the curve on parametric surface that define the outer boundary of the trimmed surface

cpsibi Pointer to the i closed curve that defines the inner boundary (i¼ 1;…; ncci)
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is an assembly of the individual simple curves that result in a
continuous curve. This entity is simply an ordered list of curves,
where the terminate point of each simple curve is the start point
of the succeeding curve. The specification adopted to indicate this
entity in the parameter data section is the following:

102; nsc; sc1; sc2;…; scnsc ;

where nsc denotes the number of simple curves that build
the composite curve entity. The parameter sci corresponds to the
pointer to each i simple curve entity (No. 126), defined in the
directory entry section, by means of the corresponding line
number in the parameter data section (values indicated in the
columns 66–72). In fact, note that all pointers used in
the parameter data section correspond to the line number in the
directory entry section, associated to the entity. Table 3 presents a
brief definition of the parameters used to define the composite
curve entity. The curve on a parametric surface entity (No. 142)
associates a composite curve with a surface and classifies the curve
as lying on the surface. The specification used in the IGES format
file for this entity is the following:

142; wc; se; ccuv; ccxyz; rep;

The surface entity (No. 128) on which the curve lies is identified
through the pointer denoted by se. Since the composite curve can
be defined in two different ways, the curve lying on the surface is
identified by two pointers for the same composite curve entity
(No. 102). Thus, the pointer ccuv is used to designate the composite
curve in the parametric domain of the surface ðu; vÞ, while the
pointer ccxyz is applied to indicate the same curve, but in the
Euclidean space. Table 3 presents a brief description of all para-
meters employed to define this entity. Finally, the trimmed
parametric surface entity (No. 144) contains information about
the basis NURBS surface that is to be trimmed as well as the set of
trimming curves which define the boundary of the trimmed
surface. The specification adopted in the IGES format to represent
this entity is the following:

144; se; tr; ncci; cps
ob; cpsib1 ; cps

ib
2 ;…; cpsibncci

;
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Fig. 6. Procedure to define a trimmed NURBS surface from entity types present in the IGES file.
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Fig. 7. Set of surface points used in the global search: (a) vertices of the trimmed surface; (b) grid of points equally spaced in the parametric domain.
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The pointer se indicates the basis NURBS surface entity (No. 128)
and the numeric parameter tr specifies the type of surface domain
that defines the trimmed surface. Hence, the value tr¼ 0 means
that the domain of the trimmed surface is equal to the one of the
basis NURBS surface, i.e. the surface is not trimmed. On the other
hand, if the surface domain is defined by a set of trimming curves,
the parameter takes the value tr¼ 1. The number of closed curves
which compose the inner boundary is designated by ncci. The
pointer cpsob identifies the curve on the parametric surface entity
(No. 142) that constitutes the outer boundary of the trimmed
surface, while cpsibi designates the i closed inner boundary curve
entity (No. 142) [15,22]. For more details about the parameters
used to define the trimmed parametric surface entity (No. 144) see
Table 3.

The five geometry entities previously presented are connected
through hierarchical relationships, as shown in Fig. 6. This figure
presents the sequential procedure performed to extract the
necessary information to define each trimmed NURBS surface
present in the IGES file format [35]. Then, the first entity to
identify in the IGES file is the trimmed parametric surface (No.
144), which holds the highest level of the hierarchy.
4. Vertex normal vector evaluation

Typically the forming tools involved in the numerical simula-
tion of sheet metal forming processes can be considered rigid,
which allows to model only their exterior surfaces. The discretisa-
tion of the contact surface with the aid of a piecewise linear mesh
can be subsequently smoothed using a surface interpolation
method, allowing the use of a relatively coarse piecewise mesh
for tool description [24,25]. Usually, the tool geometrical model is
provided in IGES file format to the mesh generation software,
which produces a piecewise mesh over the trimmed NURBS
surfaces. Independently of the mesh generation software used,
all output mesh files contain both the coordinates of each mesh
vertex and the connectivity of each element. However, the
application of the Nagata patch interpolation algorithm as surface
smoothing method requires also the knowledge of the normal
vector of the original surface, in each vertex of the piecewise mesh
[17]. In this case, the information available in the IGES file, which
was previously used in the mesh generation, should be applied to
determine the vertex normal vector. The proposed algorithm to
evaluate the normal vector in each vertex consists in the following
three steps: surface global search, local search and normal vector
evaluation. Each one of these steps is described in detail in the
following subsections.

4.1. Global search: ordering of trimmed NURBS surfaces

Globally, the tool geometry is composed by several trimmed
NURBS surfaces, which can easily reach several hundreds, parti-
cularly in complex models. However, each vertex of the piecewise
linear mesh was created over only one NURBS surface that is a
priori unknown. Since the vertex corresponds to a point of an
unknown NURBS surface, the first step of the proposed algorithm
is to identify its laying surface. Knowing the surface it is possible to
evaluate the coordinates of the vertex in the parametric space of
the NURBS surface and, consequently, the surface normal vector at
that location. Since the model can be composed by many trimmed
surfaces, the aim of the global search is ordering all surfaces
composing the model according to their distance to the vertex
under analysis, in order to be able to apply the computationally
more expensive local search to a limited set of surfaces.

For each mesh vertex, the application of the global search
approach requires a loop over all trimmed NURBS surfaces
composing the model. Therefore, the strategy followed in the
proposed algorithm is to evaluate only simple quantities, i.e.,
distances between points, avoiding computational inefficient cal-
culations based on the NURBS surfaces definition [23]. In order to
evaluate these distances, some points of the trimmed NURBS
surfaces are required, which should preferably belong to the
trimmed surface domain. Thus, two methods can be followed:
(i) use the information available about the trimmed surface
domain, as shown in Fig. 7(a); or (ii) use only the information
available about the basis NURBS surface (see Fig. 7(b)). In the last
approach, Eq. (4) can be applied to build a grid a points, with some
predefined values on the parametric domain ðu; vÞ, as schemati-
cally represented in Fig. 7(b). However, in this study, the global
search will be performed adopting the first strategy, i.e. the
vertices of each trimmed NURBS surface, defined in the Euclidean
space, will be used to represent a simple approximation of the
surface boundary.

The IGES file format do not comprise an individual entity with the
coordinates of the set of points that defines the vertices of the surface
boundaries. However, these vertices can be defined through the end



Fig. 8. Example of trimmed NURBS surfaces with outer boundary composed by few trimming curves: (a) one curve; (b) two curves; (c) three curves.
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points of the trimming curves that describe the surface boundaries.
For each trimmed NURBS surface, the first step is to identify the
corresponding entity No. 144. This entity includes the cpsob (cf.
Table 3) pointer to the curve on the parametric surface entity (No.
142) defining the outer boundary surface, as well as a pointer for each
closed curve on the parametric surface, composing the inner bound-
aries of the surface. Within each entity No. 142, the ccxyz (cf. Table 3)
pointer defines the composite curve entity (No. 102), where the
simple NURBS curves entity (No. 126) have their control points
defined in the Euclidean space. An important property of the NURBS
curves is that any curve always starts in the first control point and
ends in the last control point [23]. Therefore, the application of this
property allows extracting directly the starting point of each curve
from the information available in the entity No. 126 of the IGES
specification, avoiding the calculation of additional points. Note that
the number of extracted points is equal to the number of trimming
NURBS curves (see Fig. 7(a)).

In some particular cases this approach can be inefficient due to
the reduced number of points in the definition of the outer surface
boundary. Fig. 8 shows three examples of trimmed NURBS surfaces
that present a reduced amount of trimming NURBS curves in the
outer boundary definition. The problem is more evident in
surfaces trimmed by only one curve (see Fig. 8(a)), for which the
surface domain cannot be correctly approximated using only one
vertex. Therefore, in this work, a special methodology is proposed
when the outer boundary of the trimmed surface is defined with
less than four trimming curves. In that case, instead of using the
trimmed surface vertices, the four vertices of the basis NURBS
surface are employed in the global search (represented in Fig. 8 by
the hollow points). The same approach is applied for the case of
untrimmed NURBS surfaces.

The tools geometry can be composed by many surfaces with a
large difference in size (area), particularly in complex models [36].
This can lead to problems in the global search for large surfaces,
since the distance between element vertices is much larger than
for smaller surfaces. In order to avoid this problem, the Euclidean
distance between the mesh vertex and the surface points should
be calculated not only for the surface vertices but also for the
centroid of the trimmed NURBS surface. However, it is important
to mention that it is not mandatory for this auxiliary point to be a
surface point, since it will be used only for global search. There-
fore, a simple strategy is adopted for its determination, consider-
ing it only as a function of the outer surface vertices coordinates in
the Euclidean space. Following this approach, the position vector
of the approximated centroid cv of a surface, defined by a set of k
vertices, is given by:

xc ¼ 1
k

∑
k

i ¼ 1
xv
i ; ð10Þ

where xv
i is the position vector of the vi surface outer vertex. Thus,

the total number of points evaluated in the global search for each
trimmed NURBS surface is kþ 1.
Following the strategy mentioned above, the first step of the
global search algorithm is evaluating the coordinates of the
vertices and the corresponding centroid, for each trimmed NURBS
surface. This calculation is performed just once at the beginning of
the process for all surfaces, being this information used for all
mesh vertices. Afterwards, for each mesh vertex, a loop is
performed in order to calculate its Euclidean distance to each of
the trimmed NURBS vertices and centroids. This allows creating an
ordered list of all trimmed NURBS surfaces, for each piecewise
linear mesh vertex. The surfaces are ordered by increasing dis-
tance, where each trimmed NURBS surface is represented by the
nearest point of the set of points evaluated.
4.2. Local search: vertex projection on the NURBS surface

The local search procedure is performed to find both the
correct trimmed NURBS surface and the local coordinates of the
mesh vertex in the surface domain. Since the local search is
computationally more expensive, it is applied according to the
ordered surfaces list previously determined, in order to improve
its computational efficiency. Note that the local search loop over
the list of surfaces terminates when a trimmed NURBS surface
meets the requirements, reducing the number of surfaces to be
tested. The coordinates of each mesh vertex in the parametric
domain of the trimmed NURBS surface are obtained from the
orthogonal projection of the mesh vertex on the surface [14,37–
40]. The main feature of this projection is the small distance
between the mesh vertex and its projected point on the surface,
improving the convergence of the projection algorithm. Further-
more, C2 continuity is assured inside the NURBS surfaces since the
tool models provided by the CAD packages are typically very
smooth and without sharp edges. All these elements enable the
use of the Newton–Raphson method to find the problem solution.
Fig. 9(a) presents schematically the projection point P′ obtained
from the orthogonal projection of a generic point P on the surface
Sðu; vÞ. The distance vector rðu; vÞ, which connects the point P to an
arbitrary point of the surface, is defined as:

rðu; vÞ ¼ Sðu; vÞ−xPðx; y; zÞ ; ð11Þ

where xPðx; y; zÞ represents the position vector of point P. Follow-
ing Piegl and Tiller [23] the orthogonality conditions imposed to
the projection are based on the dot product functions, which result
in a non-linear system of equations, given by:

f ðu; vÞ ¼ Suðu; vÞ⋅rðu; vÞ ¼ 0
gðu; vÞ ¼ Svðu; vÞ⋅rðu; vÞ ¼ 0

;

(
ð12Þ

where Suðu; vÞ ¼ ∂Sðu; vÞ=∂u and Svðu; vÞ ¼ ∂Sðu; vÞ=∂v denote the
first partial derivatives of the NURBS surface. The system of
equations presented in Eq. (12) can be iteratively solved by
applying the Newton–Raphson method. In this case, the iteration
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Fig. 9. Local search procedure: (a) orthogonal projection of a point on a surface; (b) grid of points defined in the smallest rectangular domain containing the trimmed
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iþ 1 is presented as:

Xðiþ1Þ ¼XðiÞ− JðiÞ
h i−1

FðXðiÞÞ ; ð13Þ

with

FðXðiÞÞ ¼ f ðXðiÞÞ
gðXðiÞÞ

( )
; XðiÞ ¼ uðiÞ

vðiÞ

( )
: ð14Þ

The Jacobian matrix of FðXÞ at XðiÞ is given by:

JðiÞ ¼
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

2
4

3
5ðiÞ

¼

���Su���2þ r⋅Suu Su⋅Sv þ r⋅Suv

Su⋅Sv þ r⋅Suv
���Sv���2 þ r⋅Svv

2
664

3
775
ðiÞ

; ð15Þ

where Suuðu; vÞ ¼ ∂2Sðu; vÞ=∂u2 and Svvðu; vÞ ¼ ∂2Sðu; vÞ=∂v2 denote
the second partial derivatives of the NURBS surface, while the
mixed partial derivative is Suvðu; vÞ ¼ ∂2Sðu; vÞ=∂v∂u [41]. The con-
vergence rate of the Newton–Raphson method is greatly influ-
enced by the surface geometric characteristics, mainly the surface
degree in both parametric directions ðp; qÞ, as well as by the initial
solution selected for the iterative procedure, Xð0Þ [38].

In this study, the strategy followed to improve the convergence
rate is to use a surface point as close as possible to the P′ as initial
solution for the iterative method [38]. Thus, a uniform grid of points
is created over each trimmed NURBS surface in order to use the
nearest grid point as initial solution. Note that this point must be
defined in the local coordinates of the surface, as shown in Eq. (14).
The number of points created is related to the number of surface
control points in each parametric direction. Hence, for each surface
parametric direction ðu; vÞ, the number of grid points is given by:

NGP ¼ 2NCP þ 1; ð16Þ
where NCP is the number of control points in the same parametric
direction. Note that in this study, the maximum number of grid
points allowed in each direction was limited to 17, in order to
control the computational cost of the local search. Since all piece-
wise mesh vertices are within the trimmed surface domain, the grid
of points is generated considering only the smallest rectangular
domain covering the trimmed surface domain. Following the same
approach used in the global search, this domain is determined using
the end points of the trimming curves, defined in the parametric
domain of the basis NURBS surface, as shown in Fig. 9(b). These
points (control points) can be directly extracted from the IGES file
using the information available in each entity No. 126, mentioned in
the entity No. 102, which in turn is referred in entity No. 142
through the pointer ccuv (cf. Table 3). Note that for the particular
cases of trimmed surface with less than four trimming curves, the
same methodology of the global search is employed, which corre-
sponds to using the domain of the basis NURBS surface. Thus, the
values that delimit the domain of each surface are defined by the
conditions u∈½umin;umax� and v∈½vmin; vmax�, where the maximum
and minimum local coordinate are obtained from the trimming
curves vertices evaluated in the parametric domain of the surface.
To conclude, the initial solution is the grid point closer to the mesh
vertex, obtained based on the Euclidean distance between each
point of the grid and the piecewise mesh vertex.

The convergence criterion defined for the non-linear system of
equations presented in Eq. (12), is based on the simultaneously
fulfilment of the four following conditions:

jrðiÞj≤εconvr

jXðiþ1Þ−XðiÞj≤εconvx

umin≤uðiÞ ≤umax

vmin≤vðiÞ ≤vmax

;

8>>>><
>>>>:

ð17Þ

where εconvr and εconvx are predefined threshold values. Since all
mesh vertices are points generated on a trimmed NURBS surface,
the distance between the vertex and the surface point is very small
and restricted by the parameter εconvr , which limits the amplitude
of the distance vector rðu; vÞ. On the other hand, in order to reduce
the possibility of projecting the mesh vertex outside of the
trimmed NURBS surface domain, the last two conditions limit
the domain of local coordinates ðu; vÞ to a simple rectangular
domain, defined as shown in Fig. 9(b). An approximate domain can
be adopted since the first condition ensures that the mesh vertex
lies on the basis NURBS surface. In fact, this procedure can result in
the selection of surfaces wherein the mesh vertex is projected
outside the real domain of a trimmed NURBS surface. Fig. 10
presents a simple example where the defined rectangular domains
of two trimmed surfaces are partially overlapped. In this situation,
a mesh vertex on the overlap region will be projected in the first
surface of the list provided by the global search algorithm, since
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the conditions of Eq. (17) are satisfied for both surfaces. However,
since the final goal is evaluating the surface normal vector, which is
determined using the information regarding the basis NURBS sur-
face, both trimmed surfaces provide the same normal vector. In fact,
the conjunction of the first condition with the last two conditions,
in Eq. (17), avoids a wrong selection of the basis NURBS surface used
to evaluate the surface normal vector. Hence, if convergence is
attained within the maximum allowed number of iterations, IN, for
a specific trimmed surface of the ordered list, then that surface is
selected and the local search process terminates. This means that
for each mesh vertex only one solution is obtained, i.e. the first
surface that fulfil the conditions presented in Eq. (17).

4.3. Normal vector evaluation

Consider that the projection point P′ determined in the local
search algorithm presents coordinates ðu; vÞ, in the parametric
domain of the trimmed NURBS surface. Thus, the unit normal
vector of the mesh vertex can be calculated based on the first
derivatives of the NURBS surface in the projection point as:

nðu; vÞ ¼ Suðu; vÞ⋅Svðu; vÞ
jSuðu; vÞ⋅Svðu; vÞj

: ð18Þ
5. Algorithm validation: example of mesh smoothing

In this section the proposed algorithm is tested to evaluate the
surface normal vector in each vertex of a piecewise linear mesh,
considering an example of mesh smoothing with Nagata patches.
The selected geometry corresponds to the die of a cross tool deep
drawing operation [42], which is discretised with both triangular
and quadrilateral piecewise linear elements, using an unstructured
mesh. The Nagata patch interpolation is applied to smooth the
piecewise mesh using the evaluated surface normal vector for each
vertex and afterwards the shape error is determined. Due to
geometrical and material symmetry conditions in the numerical
simulation, only one quarter of the global model is considered. The
dimensions are not presented since they are not required for the
analysis presented in this study. Fig. 11 presents the three sequential
phases required to obtain the tool model compose by Nagata
patches, based on a model provided through the IGES file format
(see Fig. 11(a)). The generation of the piecewise linear mesh from
the tool model is the first step to be performed (see Fig. 11(b)).
Afterward, the proposed algorithm is applied in order to evaluate
the surface normal vector in each vertex of the mesh. Finally, the
Nagata patch interpolation algorithm is applied to recover the
surface curvature of the piecewise mesh, as shown in Fig. 11(c).

5.1. Shape error evaluation

The results of the mesh smoothing operation are dependent on
the strategy adopted to compute the normal vectors of mesh
vertices [24,25]. Therefore, in order to evaluate the accuracy and
efficiency of the developed algorithm, a small angular perturbation
Fig. 11. Die geometry for a cross tool forming process, described by: (a)
Δα will be introduced in the normal vectors estimated with the
proposed algorithm. The selected values for the perturbation are
within the range of the angular deviations typically obtained when
the normal vectors are approximated via weighting adjacent facet
normal vectors [21,26]. This allows verifying the influence of the
surface normal vectors in the Nagata patch interpolation accuracy
and evaluating the algorithm efficiency. The direction of the
perturbation is generated randomly for each mesh vertex, but with
a fixed value for all vertices. The evaluation of the Nagata patch
model accuracy is performed through the shape error distribution
in each Nagata patch generated. The shape error is determined as:

δShape ¼ ðPNagata−PCADÞ⋅nCAD; ð19Þ
where PNagata is the position vector of a generic point over the
Nagata patch, PCAD is the corresponding orthogonal projection on
the CAD model (trimmed NURBS surface) and nCAD is the unit
surface normal vector at the projected point.

The selected geometry corresponds to the one presented in
Fig. 11, which presents a total of 23 trimmed NURBS surfaces. The
maximum number of iterations allowed to solve the non-linear
system of equations presented in Eq. (12) was assumed as being
equal to IN¼ 8. The predefined threshold values for the conver-
gence criterion were εconvr ¼ 0:05 and εconvx ¼ 0:01 (see Eq. (17)).
Fig. 12(a) and (b) presents the shape error distribution of the
Nagata patch interpolation applied to the proposed model for two
values of angular perturbation, Δα¼ 01 and Δα¼ 21, respectively.
Thus, Fig. 12(a) shows the error distribution resulting from the
application of the Nagata mesh smoothing method using the
normal vectors calculated with the proposed algorithm. The
resulting error distribution presents symmetry since the model
is also symmetric, although the mesh is not completely symmetric.
The maximum positive value of the shape error attained is
0.076 mm in the hyperbolic section of the torus, which presents
a fillet radius of 7 mm. The maximum negative value is −0.037 mm
and occurs in the elliptic section of the torus, which corresponds
to a fillet radius of 21.3 mm. For the flat model surfaces the shape
error is null, as expected. On the other hand, the introduction of a
small angular perturbation Δα¼ 21 results in the highly asym-
metric error distribution, shown in Fig. 12(b). In this case, the
initial flat areas of the model present non-null shape error values.
In fact, the higher values of shape error occur in the edges of the
patches located in originally flat areas of the model. Moreover, the
error increases with the increase of the patch dimension, which
limits the application of large patches for describing flat surfaces.

In order to study the evolution of the shape error range with the
introduced angular perturbation, five non-zero perturbation values
were tested. Table 4 summarises both the maximum shape error
values attained as well as its range for all tested models. The last row
of the table presents the relative increase of the shape error range,
taking as reference the model with no angular perturbation
ðΔα¼ 01Þ. A severe increase of the shape error range is observed
with the increase of the angular perturbation value. In fact, a small
angular perturbation of 11 leads to an increase in the shape error
range higher than 65%, while for an angular perturbation value of 51
the increase in the shape error range is higher than 1000%. The
IGES model; (b) piecewise linear mesh; (c) Nagata patches.



Fig. 12. Shape error distribution on the Nagata patch interpolation with angular perturbation of: (a) Δα¼ 01; (b) Δα¼ 21.

Table 4
Shape error obtained by the Nagata interpolation for increasing angular perturbation values.

Shape error Δα¼ 01 Δα¼ 11 Δα¼ 21 Δα¼ 31 Δα¼ 41 Δα¼ 51

Maximum positive [mm] 0.0755 0.1087 0.2629 0.3945 0.5263 0.7333
Maximum negative [mm] −0.0364 −0.0783 −0.2710 −0.3689 −0.4922 −0.6229
Range [mm] 0.1119 0.1870 0.5340 0.7634 1.0185 1.2742
Range increase [%] – 67.1 377.1 582.2 810.2 1038.7
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normal vectors are accurately evaluated using the proposed algo-
rithm, as shown in the selected example through the high levels of
geometric accuracy attained in the Nagata patch interpolation.
6. Conclusions

This paper presents an algorithm to evaluate the surface normal
vector in piecewise mesh vertices, based on the information
available in the IGES file format. The geometric information is
extracted from the IGES files based on trimmed NURBS surfaces
definition, which is commonly used in CAD/CAE systems. The
application of the Nagata patch interpolation as smoothing method
requires an accurate normal vector evaluation in order to avail the
full potential of the interpolation. The introduction of small angular
perturbations, in the normal vector orientation, leads to large shape
errors in the interpolated geometry, relatively to the one obtained
with the normal vectors evaluated using the proposed algorithm. In
fact, for an angular perturbation of 11 the shape error range can
increase more than 65%. The presented algorithm is an efficient and
accurate method to combine with the Nagata patch interpolation
method, leading to much lower interpolation errors when com-
pared with interpolations that comprise perturbations in the
normal vector evaluation. The proposed algorithm can be easily
extended to other scientific fields that require local surface proper-
ties estimation, which can be evaluated using the information
extracted from the IGES file format.
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