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Highlights

• A new 3D contact surface smoothing approach for large deformation contact problems between deformable bodies is proposed.
• The local Nagata patch interpolation is used to smooth arbitrary surface meshes.
• The original curvature of the master surface is recovered using a relatively coarse mesh.
• The non-physical contact force oscillations usual in the faceted surface representation are eliminated.
• The accuracy, robustness and performance of the numerical simulations is improved adopting the surface smoothing method.

Abstract

This paper presents a contact surface smoothing method combined with the node-to-segment discretization technique to solve
large deformation frictional contact problems between deformable bodies. The Nagata patch interpolation is used to smooth the
surface mesh, providing a master surface with quasi-G1 continuity between patches. Moreover, the local support of the interpolation
method allows to deal with surface meshes of arbitrary topology (regular and irregular finite element discretizations), as well as
hybrid meshes. The non-physical oscillations in the contact force evolution, induced by the faceted contact surface representation,
are reduced using the proposed smoothing method. Furthermore, the smooth representation of the master surface allows a more
accurately evaluation of the resulting stresses and forces, while providing an important improvement in convergence behaviour.
Four representative numerical examples are used to demonstrate the advantages of the proposed contact smoothing method.
The results show a significant improvement in the accuracy, robustness and performance of the numerical simulations using the
smoothing approach, when compared with the piecewise faceted contact surface description.
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1. Introduction

The description of the contact interaction across bodies plays an important role in many engineering problems.
However, the numerical simulation of frictional contact between solids undergoing large deformations using implicit
methods is still one of the most challenging tasks in computational mechanics, due to the highly nonlinear and non-
smooth behaviour [1,2]. Indeed, the inequality constraints resulting from the impenetrability condition and the friction
law are expressed by non-smooth multivalued relationships. The approaches usually considered for incorporating the
contact constraints in the variational formulation of the equilibrium problem are: (i) the penalty method [3–6]; (ii) the
Lagrange multiplier method [7–9] and (iii) the augmented Lagrangian method [10–12]. The penalty method is widely
used due to its simple formulation, although the adequate choice of the penalty parameter may be difficult [13].
In fact, low values of the penalty parameter lead to the inaccurate enforcement of the contact constraint conditions
(unacceptable penetration), while high values of the penalty parameters can lead to the ill-conditioning of the stiffness
matrix. The Lagrange multiplier method exactly enforces the impenetrability and friction constraints, introducing
extra variables (Lagrange multipliers), which represent the contact forces. The augmented Lagrangian method takes
advantage of these two cited methods, allowing the exact representation of the contact constraints for a finite value
of the penalty parameter. The generalized Newton method can be applied to solve the mixed system of equations
(displacements and Lagrange multipliers as unknowns) [10,14], or alternatively the solution can be obtained with the
Uzawa’s algorithm [12], where the unknowns are only the displacements due to the nested update of dual variables
(Lagrange multipliers).

The discretization of the contact interface in problems involving large sliding between deformable bodies is
commonly performed with the node-to-segment (NTS) contact algorithm developed by Hallquist [4]. It is combined
with the master–slave approach, where the enforcement of the contact constraints (impenetrability and friction
conditions) is established in the nodes of the slave surface, preventing its penetration in the opposing discretized
master surface. Since the geometry of the contacting surfaces is arbitrarily curved, its spatial discretization with low
order finite elements introduces discontinuities in the surface normal vector field (facetization problem) [15]. Indeed,
the bilinear surface facets defining the master surface are created using the exterior nodes of the low order solid
elements defining the solid body. This geometric discontinuity leads to numerical instability, loss of the quadratic
convergence rate in the non-linear solution scheme and non-physical oscillations in the contact force when a slave
node slides over several master facets [16].

In order to overcome the chatter effect induced by the spatial discretization, several surface smoothing procedures
have been proposed in the context of NTS formulation. Since the kinematic constraints are more accurately evaluated
(the gap function and the surface normal vector), the robustness of the contact algorithms and the accuracy of the
solution is significantly improved adopting a smoothing scheme [15,17–19]. In the NTS formulation only the master
surface is smoothed, creating parametric patches over the discretized surface using the coordinates of the master nodes,
dictating that the slave nodes interact with a smooth master surface. Different interpolation methods have been ap-
plied to smooth the contact surface mesh of deformable bodies: cubic Hermite interpolation [17], cubic Bézier [16,20],
cubic Splines [21,22] and NURBS [23,24]. All these approaches were originally developed for 2D problems, thus its
extension to describe contact surfaces in 3D is restricted to regular quadrilateral meshes, since the patches are obtained
using the tensor product. In fact, the application of a smoothing method to arbitrary surface meshes is more difficult,
because the number of neighbouring facets taken into account to generate the interpolated surface is arbitrary [25].
Only two approaches are available to deal with irregular 3D surface meshes. The first one, proposed by Puso and
Laursen [26], uses Gregory patches in the surface smoothing, providing G1 continuity between adjacent patches.
It can be applicable to both regular and irregular meshes of quadrilateral facets. The other approach, developed by
Krstulovic-Opara et al. [27], employs quartic Bézier patches in the interpolation using the nodes and the centroid of
triangular finite elements. This approach leads to C1 continuity everywhere except at the element nodes. On the other
hand, the approach proposed by Belytschko et al. [28], is an alternative to the classic surface smoothing methods,
performing the smoothing implicitly by constructing smooth signed distance functions from a scattered set of nodes,
using a moving least-squares approximation. Although this method can be applicable to arbitrary surface meshes, the
generated smoothed surface does not pass through the master nodes exactly, which can introduce some inaccuracies
in the contact geometry [29]. Assuming that one contact body is rigid (Signorini problems), various computer aided
design (CAD) interpolations can be used to define 3D smooth surfaces [30–32]. Nevertheless, this corresponds to a
simpler problem than the case of two deformable bodies, since the master surface cannot be deformed.
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Fig. 1. Different types of finite elements used for the spatial discretization of a sphere: (a) linear tetrahedral element mesh; (b) linear hexahedral
element mesh; (c) hybrid mesh composed by tetrahedral, hexahedral and pyramidal elements.

In the last years, the segment-to-segment formulation [33] coupled with the mortar method has been successfully
applied to solve large deformation frictional contact problems [34–38], overcoming some well-known drawbacks
exhibited by the classical NTS formulation, such as the chatter effect in the contact force evolution. Since the contact
constraints are imposed in the weak form, using integrals defined in the entire discretized contact area, the mortar
method contains inherent smoothing. The transmission of forces is performed through its distribution in the whole
contact surface, allowing to satisfy the contact patch test introduced by Taylor and Papadopoulos [39], i.e. exactly
transfer a constant pressure through a flat surface. Although the classical NTS contact formulation fails the contact
patch test using the single pass algorithm [39], applying the two pass algorithm in conjunction with the Lagrange
multiplier method allows to satisfy the patch test for low order finite elements [40,41]. Concurrently, significant effort
has been made in recent years to develop the isogeometric analysis for solving contact problems [42–44], firstly
introduced by Hughes et al. [45]. Since the parameterization of both the geometry and the displacement field is
based on basis functions emanating from the CAD (e.g. NURBS) rather than on Lagrange polynomial elements, the
advantages for modelling contact problems is evident. The contact force oscillations arising in large sliding contact
when using conventional Lagrange polynomial elements are effectively alleviate, yielding highly robust schemes due
to the continuous smooth surface approximation [46]. Nevertheless, its application in contact problems involving
complex geometries requires a careful construction of the CAD model in order to avoid trimmed NURBS surfaces.

The spatial discretization of a simple sphere using different types of finite elements is presented in Fig. 1,
establishing the typology of the contact surface mesh. The discretization of complex geometries with tetrahedral
finite elements (Fig. 1(a)) is significantly easier than with hexahedral elements (Fig. 1(b)), since it is possible to use
automatic meshing tools [47]. On the other hand, hybrid meshes overcome the main drawback of regular meshes
(lack of flexibility), while combining the advantages of regular and irregular meshes [48]. The sphere presented
in Fig. 1(c) is discretized with a regular mesh of hexahedral elements in the interior of the volume and pyramidal
elements at the interface between hexahedral and tetrahedral finite elements. The surface contact mesh is composed
mainly by pyramidal elements and some tetrahedral finite elements, leading to a hybrid surface mesh. Regarding the
smoothing of irregular surface meshes, the smoothing method developed by Krstulovic-Opara et al. [27] is restricted to
triangular facets derived from the 4-node tetrahedral finite elements (Fig. 1(a)), while the approach proposed by Puso
and Laursen [26] is limited to quadrilateral facets resulting from the 8-node hexahedral finite elements (Fig. 1(b)).

The purpose of the present study is to develop a contact surface smoothing procedure for arbitrary 3D surface
meshes. The Nagata patch interpolation [49] is adopted for the smooth representation of the master surface, where
each patch is created using only the position and surface normal vectors at the nodes of each facet. Indeed, the
local support of the interpolation method allows to deal with hybrid surface meshes of arbitrary topology (irregular
meshes composed by triangular and quadrilateral facets), which is the main feature of the proposed surface smoothing
procedure. This interpolation method was previously applied to smooth rigid surfaces involved in 3D contact
problems [50–52]. This work presents the extension of this interpolation method to deal with contact problems
between deformable bodies, where the smoothed surface will suffer large deformations.

Following this introductory section, the governing equations of the frictional contact problem between two
deformable bodies undergoing large deformation are introduced in Section 2, using the augmented Lagrangian
approach to impose the contact constraints. The Nagata patch interpolation method is reviewed in Section 3, followed
by the description of the proposed contact surface smoothing procedure, which is compared with the traditional
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Fig. 2. Notation for the two body large deformation frictional contact problem.

piecewise faceted representation. The formulation of the node-to-Nagata contact elements (triangular and quadrilateral
Nagata patch) used to deal with large sliding frictional contact problems is presented in Section 4, including the
definition of the residual vectors and tangent matrices. Four representative numerical examples are presented in
Section 5, illustrating the accuracy and effectiveness of the proposed contact surface smoothing method. Finally,
the main conclusions of this study are discussed in Section 6.

2. Contact mechanics problem

The 3D frictional contact problem between two deformable bodies undergoing large deformation is briefly
reviewed in the continuum framework, following the notation adopted by Laursen and Simo [53]. Without loss of
generality, for purposes of simplicity, the contact problem between two bodies Bα (α = 1, 2) defined within the
Euclidean space R3 is considered, as illustrated in Fig. 2. In case of large deformation, it is necessary to distinguish
between the reference and the current configurations. The contacting bodies in the reference configuration are
represented by the open sets Ωα

0 ⊂ R3, while their boundaries are denoted by ∂Ωα
0 . The union of the open set

with its boundary is denoted by Ω̄α
0 = Ωα

0 ∪ ∂Ωα
0 for each body. The deformation mappings of the bodies are denoted

by φα , for some closed time interval of interest t ∈ [0, T ]. The material points of each body are denoted by Xα
∈ Ω̄α

0
in the reference configuration and by xα

= φα(Xα, t) in the current configuration Ωα at time t , as shown in Fig. 2. The
vector connecting any point of body Bα in its current configuration with the position of the same point in the reference
configuration is called displacement vector uα

= xα
− Xα . The surfaces of the bodies in the current configuration,

denoted by ∂Ωα , are divided into three non-overlapping regions: γ α
u where displacements are prescribed (Dirichlet

boundary conditions), γ α
σ where tractions are prescribed (Neumann boundary conditions) and γ α

c where the frictional
contact constraints are defined (see Fig. 2). The spatial counterparts of these three areas are denoted by Γ α

u , Γ α
σ and

Γ α
c , respectively. Although the identification of the master and slave body is somewhat arbitrary, the bodies B1 and

B2 will be referenced as slave and master, respectively. Using the same terminology for their boundaries, the contact
surfaces γ 1

c and γ 2
c will be denoted as slave and master surfaces, respectively.

Assuming quasi-static response, the equilibrium equations and the boundary conditions for each body within the
large deformation framework in absence of contact are given as follows:div(σα) + bα

= 0 in Ωα

tα = σαnα
= t̄α on γ α

σ

uα
= ūα on γ α

u

(1)

where σα denotes the Cauchy stress tensor, bα stands for the body force per unit current volume, tα represents the
Cauchy traction vector (force per unit surface area in the current configuration) and nα is the outward unit normal
vector to the boundary ∂Ωα . The prescribed Cauchy traction vectors and the prescribed displacements over the
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Fig. 3. Definition of the closest point projection in the current configuration, including the parameterization of the master surface.

indicated regions are denoted by t̄α and ūα , respectively. The divergence operator div(•) involved in (1) is defined
with respect to the spatial coordinates (current configuration).

2.1. Kinematic contact constraints

In order to distinguish between the points located in the interior of the bodies and the points placed on the contact
surfaces, xs

∈ γ 1
c and xm

∈ γ 2
c refer to the slave and master points, respectively. It is useful to parameterize the master

surface by defining A ∈ R2 and a mapping ψ : A → R3 such that xm
= ψ(ξ), where ξ = (η, ζ ) ∈ A denotes the

parameterization of γ 2
c via convective coordinates, as illustrated in Fig. 3.

The motion of the slave body with respect to the master body is defined adopting the master–slave approach,
leading to an asymmetry in the definition of the contact problem. Assuming that the master surface is locally convex,
each slave point xs on the surface γ 1

c can be related to a point x̄m
= xm(η̄, ζ̄ ) belonging to the master surface γ 2

c using
the following minimization distance problem:xs

− x̄m
 = min

xm∈γ 2
c

xs
− xm(ξ1, ξ2)

 , (2)

where x̄m is the closest master point to the slave point xs, as shown in Fig. 3. This point is obtained from the normal
projection of the slave point onto the master surface [54]. All geometric quantities evaluated at the closest projection
point are denoted by a bar over the quantity. Therefore, the normal gap function is given by:

gn = (xs
− x̄m) · n̄, (3)

where the unit normal vector of the master surface at the projection point x̄m is denoted by n̄ = n(η̄, ζ̄ ). Since only the
master surface is parameterized, the superscript n2 is omitted for convenience. The sign of the normal gap function
(3) provides the geometrical status of the slave point, which is positive if the contact is open and negative when
penetration of the bodies takes place [10]. The balance of the linear momentum defined across the contact interface
dictates that the contact force exerted on the master body B2 is equal and opposite to the force applied on the slave
body B1. Hence, the action–reaction principle expresses a relationship between the Cauchy contact traction in each
body, defined by t2(η, ζ ) = −t1

= t at the contact point x̄m. Since the frictional response at the contact interface is
taken into account, the Cauchy contact traction must be decomposed into the normal and tangential components, as
follows:

t = pnn̄ + tt, (4)

where the contact pressure is calculated by pn = t · n̄ and the tangential component is evaluated by tt = (I − n̄ ⊗ n̄)t.
From the physical point of view, the Cauchy contact traction defined in (4) represents the contact force applied by the
slave body B1 on the master body B2, at the contact point x̄m.
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Fig. 4. Definition of the tangential slip vector using the mapping of the projection point from the previous time step forward to the current time
step.

The unilateral contact law enforces the physical requirement of impenetrability and compressive interaction
between contact bodies, summarized by the Karush–Kuhn–Tucker (KKT) conditions as follows:

gn ≥ 0; pn ≤ 0; gn pn = 0, (5)

where the first condition expresses the impenetrability between the bodies, the second imposes that contact pressure
(normal component of the Cauchy contact traction) is compressive, while the third condition states a complementarity
condition, imposing that gn and pn cannot be simultaneously non-null.

Several models have been developed to describe the friction behaviour [2,55]. Nevertheless the simple non-
associated Coulomb friction law is adopted in the present study. Thus, the relative tangential slip between the
contacting bodies must be introduced. It is related to the change of the solution (η̄, ζ̄ ) obtained for the closest
point projection (2), providing the path of the slave point over the master surface. The local parameterization of
the master surface induced by the finite element discretization leads to difficulties in the evaluation of the tangential
slip, particularly for irregular finite element meshes. When the incremental slip path of the slave node comprises
several finite elements (large sliding) [26], the time integration of the convective coordinates variation becomes
meaningless [53]. This problem can be avoided using the history information, as described by Agelet de Saracibar [56],
where the slip path length is evaluated through the position vectors associated with the slave point at the beginning
and the end of a time increment. Hence, quantities of the previous and current time steps will be denoted as n(•)

and n+1(•), respectively. In the present study, the convective coordinates of the projection point in the last converged
configuration n ξ̄ = (n η̄, n ζ̄ ) are used as the input parameters for the current time step. The variables from the last
converged configuration n(•) are mapped forward to the current configuration using the notation n(•̃). This means
that these variables are evaluated in the current configuration using the convective coordinates from the previous time
step, as illustrated in Fig. 4.

The simplest approximation for the slip path is given by the vector connecting the projection point calculated in
the last converged configuration, mapped forward to the current configuration, and the solution point in the current
configuration (see Fig. 4). It is expressed by:

n+11g =
n+1x̄m(n+1η̄, n+1ζ̄ ) −

n x̃m(n η̄, n ζ̄ ), (6)

where n+1x̄m(n+1η̄, n+1ζ̄ ) denotes the position vector of the projection point in the current configuration and
n x̃m(n η̄, n ζ̄ ) represents the position vector of the projection point in the last converged configuration, mapped into
the current configuration. Since, in general, the slip vector (6) is not lying in the tangential plane of the contact surface
(see Fig. 4), it is projected into the tangential plane defined by the surface normal vector at the solution point, evaluated
in the current configuration. Thus, the tangential slip vector is given by:

n+1gt = (I −
n+1n̄ ⊗

n+1n̄)n+11g, (7)

where n+1n̄ denotes the master surface normal vector at the solution point evaluated in the current time step, as
illustrated in Fig. 4. Since the time step is typically very small in comparison with the curvature of the contact surface,
the amplitude and direction of the tangential slip vector (7) is similar to slip path vector (6). The slip path length can
be evaluated more accurately using curved paths [16,25,27], nevertheless Eq. (7) is adopted in this study due to its
simplicity and because the direction of the tangential slip vector is more important than its length. In fact, the tangential
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slip vector defines the direction of the frictional force, while the slip path length is not directly used to evaluate the
magnitude of the frictional force, which is based in the contact status (stick or slip) and the contact pressure.

The friction law defined at the contact interface establishes that the frictional force vector (tangential component
of the Cauchy contact traction) is always collinear with the tangential slip vector, which is expressed by:

gt − ζ
tt

∥tt∥
= 0, (8)

where ζ is a consistency parameter. Note that the frictional force involved in (8) derives from the Cauchy contact
traction defined in (4). The tangential slip vector expressed in (10) defines the tangential sliding of the slave point
relatively to the master surface, as shown in Fig. 4. The frictional contact constraints expressed by means of the KKT
conditions are given by:

Φ = ∥tt∥ + µpn ≤ 0; ζ ≥ 0; Φζ = 0, (9)

where µ is the Coulomb friction coefficient. The first condition establishes the maximum magnitude for the frictional
force, the second condition states that frictional force arises in the direction opposite to the relative motion (slip),
while the last condition requires that such slip only occurs when ∥tt∥ = −µpn. If the frictional force is less than
the Coulomb limit (Φ < 0), there is no motion between bodies in the tangential direction (stick contact status).
These three conditions are usually denominated as friction law, slip rule and complementary condition, respectively.
The Coulomb’s cone is defined by the friction law, represented in the space of the normal and tangential traction
components.

2.2. Augmented Lagrangian method

The virtual work principle for the two-body system can be defined as the sum of the virtual work of internal and
external forces of the bodies and the virtual work of contact forces, which is classically written as:

δW (u, δu) = δW int,ext(u, δu) + δW c(u, δu) = 0, (10)

where u denotes the solution displacement field and δu represents the virtual displacements. The virtual work arising
from the internal and external forces is denoted by δW int,ext, while the contact contribution to the virtual work is
defined as:

δW c(u, δu) = −


γ 1

c

t1
· δu1dγ 1

c −


γ 2

c

t2
· δu2dγ 2

c . (11)

Applying the balance of linear momentum across the contact interface t1dγ 1
c = −t2dγ 2

c , the contact virtual work can
be represented as one integral over the master surface [53], defined by:

δW c(u, δu) =


γ 2

c

t2
· (δu1

− δu2)dγ 2
c =


γ 2

c

(pnδgn + tt · δgt)dγ 2
c , (12)

where δgn represents the variation of the normal gap function defined in (3) and δgt denotes variation of the tangen-
tial slip vector expressed in (7). The Cauchy contact traction is decomposed into normal and tangential components
using (4).

In the present study, the augmented Lagrangian method is used to impose both the unilateral contact constraints (5)
and the frictional contact constrains (9). The constrained minimization incremental problem is converted into a fully
unconstrained problem [10,57]. Following Pietrzak and Curnier [20], the augmented Lagrangian functional is defined
by:

La(u, λ, p̂n) = Π int,ext(u) +


γ 2

c

ln(gn, λn)dγ 2
c +


γ 2

c

lt(gt, λt, p̂n)dγ 2
c , (13)

where Π int,ext(u) is a smooth potential energy of the system of contacting elastic bodies or its incremental homologue
in plasticity (excluding the contact interactions). The closed forms for the augmented Lagrangian functionals ln and lt
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involved in (13) are given in the following:

ln(gn, λn) =


gnλ̂n −

ε

2
g2

n, λ̂n ≤ 0, contact

−
1
2ε

λ2
n, λ̂n > 0, gap,

(14)

lt(gt, λt, p̂n) =


λ̂t · gt −

ε

2
gt · gt,

λ̂t

 ≤ −µ p̂n, stick

−
1
2ε


λt · λt + 2µ p̂n

λ̂t

 + µ2 p̂2
n


,

λ̂t

 > −µ p̂n, slip

−
1
2ε
λt · λt, p̂n > 0, gap

(15)

where λn and λt are the Lagrange multipliers representing the contact pressure and the frictional force vector, respec-
tively. Furthermore, the augmented Lagrange multipliers are denoted by a hat λ̂n = λn + εgn and λ̂t = λt + εgt, where
ε denotes the non-negative penalty parameter. Due to the non-associated character of the Coulomb friction law, p̂n is
a regularized contact pressure at the solution, which defines the radius of the Coulomb’s cone. Note that the tangential
regularized functional lt is defined also for the non-contact domain p̂n > 0.

Since the augmented Lagrangian functional (13) is C1 continuous [20,58], the frictional contact problem can be
reformulated as the following unconstrained saddle-point problem:

min
u

max
λ

La(u, λ, p̂n), (16)

where the solution minimizes the functional by u and maximizes by λ. However, this saddle-point problem is not
a standard min–max problem since the frictional force depends on the normal contact pressure, which is a part of
the solution. In order to obtain the augmented Lagrangian frictional contact virtual work, the saddle-point stationary
condition is expressed by δLa(u, λ, p̂n) = 0, obtaining the following expression:

δW int,ext(u, δu) +


γ 2

c


∂ln
∂gn

δgn +
∂lt
∂gt

· δgt


dγ 2

c +


γ 2

c


∂ln
∂λn

δλn +
∂lt
∂λt

· δλt


dγ 2

c = 0, (17)

where the variation of the potential energy Π int,ext(u) yields the virtual work arising from the internal and external
forces δΠ int,ext

= δW int,ext(u, δu). The derivatives of the functionals ln and lt involved in the augmented virtual work
developed by contact and friction forces are given as follows, for the three possible contact statuses of a slave point
(gap, stick and slip):

∂ln(gn, λn)

∂gn
=


λ̂n, λ̂n ≤ 0, contact
0, λ̂n > 0, gap,

(18)

∂ln(gn, λn)

∂λn
=

gn, λ̂n ≤ 0, contact

−
λn

ε
, λ̂n > 0, gap,

(19)

∂lt(gt, λt)

∂gt
=


λ̂t,

λ̂t

 ≤ −µ p̂n, stick

−µ p̂n
λ̂tλ̂t

 ,

λ̂t

 > −µ p̂n, slip

0, p̂n > 0, gap,

(20)

∂lt(gt, λt)

∂λt
=



gt,

λ̂t

 ≤ −µ p̂n, stick

−
1
εt

λt + µ p̂n
λ̂tλ̂t


 ,

λ̂t

 > −µ p̂n, slip

−
1
εt
λt, p̂n > 0, gap.

(21)
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In the finite element method framework, the augmented Lagrangian virtual work principle and the Lagrange
multiplier equations represent a set of nonlinear equations for primal (displacements) and dual (contact forces)
variables. These equations are solved using the generalized Newton method [10,59]. Note that the regularized contact
pressure p̂n, which describes the augmented radius of Coulomb’s disk (section of the Coulomb’s cone), becomes an
unknown and is replaced by the augmented Lagrangian multiplier λ̂n. The linearization of the contact virtual work
principle is also performed with respect to this variable [20].

3. Surface smoothing method

The main idea behind the proposed 3D surface smoothing procedure is to combine the accuracy achieved using
the Nagata interpolation [49,52] with the efficiency of classical linear finite elements. Hence, the contact surface is
composed by individual Nagata patches associated with each facet, while the bulk is discretized with linear elements.
This ensures a more accurate evaluation of the kinematic contact variables (normal gap function and tangential slip
vector), as well as the elimination (or at least reduction) of the discontinuity in the contact surface normal vector. Thus,
several drawbacks associated with the classical piecewise bilinear representation of the master surface are eliminated
by adopting this contact surface smoothing method.

Each bilinear facet composing the master contact surface is replaced by a Nagata patch, which is defined only by the
nodes of the facet and the normal vector in each node. This nodal normal vectors are approximated using the weighted
average of the normal vectors of all facets adjacent to the master node [60], as explained in detail in Section 3.3.

3.1. Nagata patch interpolation

The Nagata patch interpolation was developed by Nagata [49] for interpolating discretized surfaces in order to
recover the original geometry with good accuracy. Its central idea is the quadratic interpolation, requiring only the
position and normal vectors at the nodes of the surface mesh. The local support of the adopted interpolation method
allows to handle irregular surface finite element meshes, as well as hybrid surface meshes (see Fig. 1(c)). Moreover,
the low order interpolation degree (quadratic) and its simplicity allows to obtain a computationally attractive approach.
On the other hand, it only achieves G1 continuity (direction of the tangent vector is continuous) between patches at
the nodes [52]. The accuracy of the surface smoothing procedure is evaluated in Section 3.2.

Considering the simplest case of a 2D interpolation, an edge defined by its end points with position vectors x0 and
x1 gives a Nagata curve in the form:

C(ξ) = x0 + (x1 − x0 − c)ξ + c ξ2, (22)

where ξ is the local coordinate that satisfies the condition 0 ≤ ξ ≤ 1. The coefficient vector c, called the curvature
parameter, adds the curvature to the edge. Requiring that the Nagata curve (22) is orthogonal to the unit normal vectors
n0 and n1 defined at the nodes, as shown in Fig. 5(a), the curvature parameter is given as follows:

c(x0, x1, n0, n1) =


[n0, n1]

1 − a2


1 −a

−a 1

 
n0 · (x1 − x0)

−n1 · (x1 − x0)


(a ≠ ±1)

[n0, ±n0]

2


n0 · (x1 − x0)

∓n0 · (x1 − x0)


= 0 (a = ±1),

(23)

where a = n0 · n1 denotes the cosine of the angle between the two normal vectors. When the normal vectors are
parallel (a = ±1), the curvature parameter vanishes and the Nagata curve degenerates into a straight segment. The
interpolation of an edge is the basis to apply the Nagata interpolation to general n-sided patches, such as triangular and
quadrilateral patches (see Fig. 5). First, each edge composing the bilinear facet is interpolated through the quadratic
curve (22) and then the interior of the Nagata patch is filled by its trace [49].

In case of a quadrilateral Nagata patch, schematically presented in Fig. 5(c), it is given by the following quadratic
polynomial:

Pq(η, ζ ) = c00 + c10η + c01ζ + c11ηζ + c20η
2
+ c02ζ

2
+ c21η

2ζ + c12ηζ 2, (24)

where η and ζ are the local coordinates satisfying the patch domain validity expressed by 0 ≤ η, ζ ≤ 1. The eight
coefficient vectors ci j are calculated using only the position and surface normal vectors at the master nodes, which are
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Fig. 5. Nagata patch interpolation: (a) curve; (b) triangular patch; (c) quadrilateral patch.

defined as follows:

c00 = x00,

c10 = x10 − x00 − c1,

c01 = x01 − x00 − c4,

c11 = x11 − x10 − x01 + x00 + c1 − c2 − c3 + c4,

c20 = c1,

c02 = c4,

c21 = c3 − c1,

c12 = c2 − c4,

(25)

where c1, c2, c3 and c4 are the coefficient vectors defined by (23) for the edges (x00, x10), (x10, x11), (x01, x11) and
(x00, x01), respectively. The triangular Nagata patch, schematically presented in Fig. 5(b), is obtained in a similar way
as the quadrilateral patch [61].

In opposition to the smoothing procedures based on least-squares approximations with polynomial basis [28,29,62],
the evaluation of the Nagata patch interpolation coefficients expressed in (25) does not requires solving any system of
equations (matrix inversion). In fact, the interpolation coefficients are calculated via the closed form of the curvature
parameter given in (23). However, the quadratic degree of the Nagata interpolation does not allow to generate curves
with inflection. Indeed, very sharp patches with inverted orientation can arise for specific arrangements of the nodal
normal vectors directions [63]. Therefore, since the surface normal vector orientation defines the sign of the normal
gap function (3), the contact status (gap or contact) can be wrongly estimated in some situations. In order to avoid
such problems, some modifications in the curvature parameter (23) were proposed by Neto et al. [61], which are based
in geometrical considerations. In fact, additional constraints are introduced to prevent the flapping of the patches,
replacing the quadratic interpolation by linear interpolation.

3.2. Accuracy in the contact surface representation

The surface smoothing procedure intends to improve the accuracy of the contact surface representation, allowing a
more accurate evaluation of the kinematic contact variables. The comparison between the classical piecewise bilinear
representation and the surface smoothing method based in the Nagata patch interpolation is presented in this section.
The circular arc (2D) and the sphere (3D) are the geometries selected to perform this analysis due to their wide
application in surface modelling. The nodal normal vectors required for the Nagata interpolation are obtained from
the analytical functions. The accuracy achieved in the contact surface representation is evaluated by means of two
distinct types of error: radial error and surface normal vector error [15,50]. Considering a sphere of radius r , the radial
error in the surface interpolation is defined by:

δr(η, ζ ) =
(P(η, ζ ) − o) · nanaly − r

r
, (26)

where P(η, ζ ) denotes the position vector of a generic point on the interpolated surface, o is the position vector of
the sphere centre and nanaly represents the unit normal vector of the spherical surface, given by the analytic function.
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Fig. 6. Radial error in a circular arc using linear and Nagata interpolation: (a) distribution for an arc with central angle of 30◦; (b) maximum value
of the modulus as function of the normalized arc length.

This error indicates the dimensionless distance (measured in the radial direction) between the discretized surface and
the analytical sphere. It is directly related with the accuracy achieved in the computation of the normal gap function
(3). The other error studied is the surface normal vector error, which is defined in terms of modulus by:

|δn(η, ζ )| = cos−1(nNagata(η, ζ ) · nanaly), (27)

where nNagata is the unit normal vector of the interpolated surface, which is defined by the cross product of the two
partial derivatives. The modulus of the normal vector error expresses the angle between the normal vector of the
interpolated surface and the analytical normal vector. This error is connected with the non-physical oscillations in the
contact force for large sliding contact problems, which are induced by the orientation of the normal to the contact
surface.

The Nagata interpolation allows to create patches with or without recovering their curvature. Thus, in this study,
the piecewise bilinear representation of the surfaces is defined through the Nagata patch interpolation setting to zero
the curvature parameter defined in (23). The comparison between linear and Nagata interpolation in terms of radial
error is presented in Fig. 6 for the circular arc. The radial error distribution in a circular arc with a central angle of 30◦,
described by a single curve, is shown in Fig. 6(a). The maximum value of error is located at the middle of the curve
for both interpolation methods, which is approximately −3.5% (inside the circular arc) in the linear interpolation
and 0.06% (outside the circular arc) in the Nagata interpolation. Since the order of magnitude in the results is not
comparable, the figure presents two different scales. The evolution of the maximum error value (modulus) as a function
of the normalized arc length (ℓ/r ), i.e. the mesh refinement, is presented in Fig. 6(b). The range considered for the
normalized arc length is from 0.0785 until 0.157, which corresponds to dividing a quarter of circle from 2 to 20 equal
segments, respectively. The maximum value of error decreases quadratically with the normalized arc length when
adopting linear interpolation, while when applying Nagata interpolation the convergence rate is quartic [49,61].

The error in the normal vector orientation is presented in Fig. 7, comparing linear and Nagata interpolations applied
to the circular arc. The error distribution in a single curve describing an arc with 30◦ of central angle is shown in
Fig. 7(a). The discontinuity of the normal vector between adjacent linear finite elements is highlighted through the
error value at the nodes, which is non-zero and presents opposite signals. On the other hand, the Nagata interpolation
assures the G1 continuity across curves due to the imposed nodal normal vector. The maximum value of the normal
vector error in the linear interpolation is 15◦ (half value of the arc central angle), while in the Nagata interpolation
it is only 0.2◦. The evolution of the maximum error (modulus) as a function of the normalized arc length (ℓ/r ) is
presented in Fig. 7(b). The maximum value decreases linearly when the linear interpolation is adopted, while the
Nagata interpolation method provides a cubic convergence rate [49,61].

The spherical surface discretized by traditional piecewise bilinear finite elements and smoothed with Nagata
patches is presented in Fig. 8(a) and (b), respectively. The radial error is negative in the faceted surface description,
either using triangular or quadrilateral finite elements. On the other hand, the Nagata interpolation leads to a surface
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Fig. 7. Normal vector error in a circular arc using linear and Nagata interpolation: (a) distribution for an arc with central angle of 30◦; (b) maximum
value of the modulus as function of the normalized arc length.

Fig. 8. Radial error distribution in the spherical surface described by: (a) bilinear finite elements; (b) Nagata patches.

with radial error predominantly positive in the triangular patches and negative in the quadrilateral patches, as shown
in Fig. 8(b). The range of the radial error decreases from 4.5% to only 0.14% when the Nagata interpolation is
applied (see Fig. 8). In fact, the maximum value of the radial error in the smoothed surface decreases quartically
with the square root of the element area normalized by the sphere radius, as showed in [52]. The distribution of the
surface normal vector error for both surface description methods is presented in Fig. 9. Considering the piecewise
bilinear finite element representation of the spherical surface, the maximum value of error arises in the nodes (see
Fig. 9(a)), which is approximately 17◦. On the other hand, when applying the Nagata patch interpolation in the surface
smoothing, the maximum value of error occurs in the edges middle, as shown in Fig. 9(b), and it is significantly
inferior (lower than 1◦). For both surface description methods, the normal vector angle error decreases with the mesh
refinement. The faceted surface description exhibits a linear convergence rate, while the Nagata smoothing method
provides a cubic order of convergence [52]. Although the smoothing method with Nagata patches does not guarantee
G1 continuity at the boundaries between patches, the low value of error in the surface normal vector (see Fig. 9(b))
and the fast convergence rate with the mesh refinement allows to assume quasi-G1 continuity.

3.3. Nodal normal vector approximation

The Nagata patch interpolation requires the knowledge of the surface normal vector in each node of the surface
mesh, as highlighted in the definition of the curvature parameter (23). Nevertheless, the finite element mesh of the
master surface only comprises the coordinates of the master nodes and the finite element connectivity. In the particular
case of rigid contact surfaces, the finite element mesh is usually generated from a CAD model, allowing the use
the information contained herein (e.g. IGES file format) to evaluate the nodal normal vectors [64]. However, in the
general case of contact between deformable bodies, the nodal normal vectors must be estimated using the information
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Fig. 9. Normal vector error distribution in the spherical surface described by: (a) bilinear finite elements; (b) Nagata patches.

Fig. 10. Schematic representation of the nodal normal vector approximation using the normal vectors of the surrounding facets, including the
notation adopted.

about the neighbouring finite elements [65]. In the present study, the normal vector required in each master node is
approximated using the weighted average of the normal vectors of all facets adjacent to the master node, following
the approach presented by Jin et al. [60].

The unit normal vector of each bilinear facet shared by a master node is defined by the cross product of its two
reciprocal edges nfacet

i = eP
i × eP

i+1/
eP

i × eP
i+1

, as illustrated in Fig. 10. Then, the surface normal vector in the
master node is obtained from the weighted sum of the normal vectors of the neighbouring facets (finite elements). The
approximated unit normal vector at a generic master node of the surface finite element mesh, surrounded by nf facets,
is expressed by:

napprox =

nf
i=1

wi nfacet
i

 nf
i=1

wi nfacet
i

 , (28)

where wi denotes the weight associated with the i th finite element (facet) surrounding the master node. The graphical
representation of (28) is illustrated in Fig. 10 for a master node surrounded by 5 triangular finite elements. When
quadrilateral finite elements (generally non-coplanar) are adopted in the contact surface description (see Fig. 1(b)),
the normal vector of each facet required for (28) is evaluated using the two reciprocal edges that share the node.

Several weighting factors have been developed taking into account different surface properties [60]. The simplest
was introduced by Gouraud [66], which will be referred as the mean weighted equally (MWE), since it provides the
same weight for all facets:

wMWE
i = 1, (29)

where each adjacent facet contributes equally to the nodal normal vector approximation. The second weighting factor
was proposed by Thürmer and Wüthrich [67], which uses the incident angle of each facet as weight. Defining the
angle between the two edges of the i th facet by αi (see Fig. 10), the weighting factor of each facet is expressed as:

wMWA
i = αi , (30)
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which will be referred as the mean weighted by angle (MWA). The next two weighting factors were developed by
Max [68]. The first one, referred as the mean weighted by areas of adjacent triangles (MWAAT), defines the weighting
factor by the area of the triangle formed by the two edges incident on the node:

wMWAAT
i =

eP
i

 eP
i+1

 sin(αi ) =

eP
i × eP

i+1

 , (31)

where eP
i and eP

i+1 denote the vectors representing the edges incident on the master node, as schematically illustrated
in Fig. 10. The other weighting factor proposed by Max [68] is referred as the mean weighted by sine and edge length
reciprocals (MWSELR), which is expressed for each facet by:

wMWSELR
i =

sin(αi )eP
i

 eP
i+1

 , (32)

which takes into account the differences in size of the adjacent edges, as well as the angle between them. Note that
this weighting factor was derived considering that the surface fitting the nodes is spherical. Thus, it provides the exact
normal vector if the discretized surface is a sphere.

In order to assess the accuracy of each weighting factor involved in the approximation of the nodal normal vector,
three different regular finite element meshes of a spherical surface are adopted, which are similar to the one shown in
Fig. 8. The coarse mesh is composed by 448 finite elements, the medium mesh involves 1372 finite elements, while
the fine mesh comprises 2800 finite elements. The error in the nodal normal vector approximation is defined by the
following expression:

θ = cos−1(napprox · nanaly), (33)

where napprox is the approximated nodal normal vector given in (28) and nanaly denotes the unit normal vector evaluated
from the analytical function. This error is evaluated in each node of the surface mesh and it represents the angle
between the analytical and the approximated normal vectors.

The cumulative frequency histogram of the angular error in the nodal normal vector approximation for the spherical
surface is presented in Fig. 11. The accuracy of the weighting factors defined in (29)–(31) is compared for the three
finite element meshes. Note that the weighting factor expressed by (32) is not studied since it provides the exact
normal vector in case of spherical surfaces. The surface mesh refinement reduces both the maximum and the median
value of the error in the nodal normal vector approximation, as shown in Fig. 11. The maximum discrepancy between
the approximated and the analytical nodal normal vector arises in the transition between triangular and quadrilateral
finite elements, which is approximately 1.1◦ in the coarse mesh using the MWA weighting factor. In all meshes, the
normal vectors obtained with the MWAAT weighting factor are worse than the others. Nevertheless, it is used by
Puso and Laursen [26] to define the nodal normal vectors required for Gregory patch interpolation applied in the
contact smoothing method. Considering the example of a spherical surface, the MWA weighting factor provides the
best approximation, resulting in a median value of approximately 0.11◦, 0.03◦ and 0.02◦ for the coarse, medium and
fine meshes, respectively (see Fig. 11). Nevertheless, the weighting factor given in (32) is adopted in all numerical
examples of Section 5, since it provides the most accurate overall results [61].

The approximated nodal normal vector provided by the weighted average (28) is modified in the nodes located in
symmetry planes, in order to provide a normal vector laying on the symmetry plane. A similar approach is also applied
in the transition between flat and curved surfaces [61], which is based in the comparison between the normal vector of
each facet and the approximated nodal normal vector. The influence of the approximated nodal normal vectors in the
Nagata interpolation accuracy was recently studied by Neto et al. [64]. They concluded that the interpolation error is
slightly affected for small values of error in the nodal normal vector. Indeed, the shape error can decreases in specific
2D situations.

4. Node-to-Nagata contact elements

The discretization of the contact interface is performed in the present study with the node-to-segment (NTS)
approach, which is commonly used to solve large deformation and large sliding contact problems [41]. The
impenetrability and friction constraints are enforced at the slave nodes, which are checked for contact with the
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Fig. 11. Cumulative frequency histogram of the angular error in the nodal normal vector approximation for three distinct finite element meshes of
a spherical surface.

discretized master surface defined by segments (or facets) [59]. In this work, the master surface is discretized either
by triangular (based on the 4-node tetrahedral finite element) or quadrilateral (based on the 8-node hexahedral finite
element) bilinear finite elements. Then, the proposed surface smoothing method (see Section 3) is applied in order to
obtain a master surface described by Nagata patches. Each contact element is defined by one slave node, a Nagata patch
(defined with three or four master nodes) and an artificial node containing the contact force (Lagrange multipliers)
as degrees of freedom. The connection between the contacting bodies is performed through the contact elements,
transferring the contact efforts from the slave to the master surface according to the impenetrability and friction
conditions.

4.1. Contact detection procedure

The contact detection is the step preceding the creation of the contact elements, which aims to determine the
contacting pairs, i.e. define for each slave node the corresponding master Nagata patch. It is typically decomposed
into two phases: global search and local search [2]. The global contact search procedure adopted in the present work is
based on selecting the closest master node for each slave node, as proposed by Benson and Hallquist [69]. Afterwards,
all Nagata patches having the master node as one of their vertices are selected for the local contact search. Due to
the large sliding and finite deformation of the bodies, the global search procedure is performed in each increment
(i.e. the set of Nagata patches candidate to establish contact with each slave node is updated). The local contact search
procedure evaluates the local coordinates of the closest point (cf. Fig. 3) that minimizes the normal gap function [4].
The closest point projection is the key feature of the local search procedure since it dictates the value of the kinematic
contact variables (see Section 2.1), for each slave node.

Assuming that the Nagata patch is expressed by P(η, ζ ) and the position vector of the slave node is denoted by
xs, the closest point projection consists in finding the local coordinates and the normal gap function, such that:

P(η, ζ ) + gnn(η, ζ ) − xs
= 0, (34)

where n(η, ζ ) is the unit normal vector of the Nagata patch. The nonlinear system of equation (34) is solved
numerically using the Newton–Raphson method, providing simultaneously the normal gap value and the local
coordinates of the contact point on the master surface [31]. The midpoint of the patch is the initial guess for the iterative
procedure. The required Jacobian matrix comprises the partial derivatives of the Nagata patch and the gradient of the
normal vector with respect to the local coordinates, which can be calculated using the Weingarten formula [31,70].

The surface smoothing approach allows to improve the contact surface representation and provides a continuous
projection of the slave nodes on the discretized master surface. In fact, the classical piecewise bilinear finite element
representation of the master surface leads to numerical difficulties in the evaluation of the normal gap function (3) and
the tangential slip vector (7), which are strongly connected with the closest point projection algorithm. Each master
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Fig. 12. Difficulties associated with the closest point projection considering the faceted description of the master surface: (a) slave node near a
sharp corner in a convex surface; (b) slave node near a valley in a concave surface.

Fig. 13. Colour map of the slave points (flat surface) with projection on the spherical surface: (a) configuration of the surfaces (lateral and top
views); (b) faceted description of the spherical surface; (c) smoothed description of the spherical surface.

segment presents its “normal projection” region, as shown in Fig. 12. However, often the assembly of the “normal
projection” regions does not fill the neighbouring space completely, creating deadzones where no normal projection
exists (no contact detected). Two types of blind spots can arise, internal and external. Slave nodes located in external
blind spots are not detected before they penetrate the master surface, as shown in Fig. 12(a). On the other hand, slave
nodes placed in internal blind spots (penetration into the master surface) are never detected, as shown in Fig. 12(b).
The loss of history information is particularly important in frictional contact problems involving large sliding, since the
tangential slip increment (Fig. 4) is defined through the local coordinates of the projection point in the last converged
solution [16].

In order to highlight the improvements in the closest point projection when the master surface is smoothed with
Nagata patches, a simple test case is presented. Two surfaces are involved, a flat (slave) surface and a convex spherical
(master) surface, as shown in Fig. 13(a). The master surface is discretized by 16 quadrilateral finite elements, while a
fine grid of points (300 divisions in each direction) is created over the square flat surface. The closest point projection
is evaluated for each of these points to determine the corresponding master facet/patch. Considering the piecewise
faceted description of the master surface, the colour map denoting the facets on which the slave points are projected
with smallest normal gap is shown in Fig. 13(b). Some deadzones (white colour) arise near the common edges between
finite elements, which are larger for points located further away from the convex surface, due to the pyramidal shape
of the blind spots (see Fig. 12). On the other hand, the smoothing of the master surface with Nagata patches yields the
colour map presented in Fig. 13(c), which represents the patches on which the slave points are projected with smallest
normal gap. The blind spots observed for bilinear finite elements in Fig. 13(b) are strongly reduced using the surface
smoothing approach. In fact, the zones of the slave surface without normal projection (white colour) are located in a
very narrow range between the patches. Nevertheless, the deadzones are not completely eliminated using the Nagata
patch interpolation. Therefore, the domain of each Nagata patch is slightly extended in all directions to cover the blind
spots in the normal projection zone. The extension of the Nagata patch domain is performed incrementally up to a
maximum of 2% increase in each direction, since the adoption of large values in the domain extension can lead to
a switching between two adjacent patches, which degrades the local convergence. This increase only takes place if
convergence is not reached within an admissible number of iterations.
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4.2. Residual vectors and tangent matrices

The residual vectors and tangent matrices of the developed contact elements are derived for the augmented
Lagrangian method. The virtual work due to frictional contact was given in (17) for continuous problems, which
takes the following form after grouping the derivatives (18)–(21):

δW c
=




γ̄ 2•

c

λ̂nδgn + gnδλn + λ̂t · δgt + gt · δλtdγ 2
c

λ̂t

 6 −µλ̂n, stick


γ̄ 2∗

c

λ̂nδgn + gnδλn − µλ̂n
λ̂tλ̂t

 · δgt −
1
ε

λt + µλ̂n
λ̂tλ̂t


 · δλtdγ 2

c

λ̂t

 > −µλ̂n, slip


γ 2

c \γ̄ 2
c

−
1
ε
λnδλn −

1
ε
λt · δλtdγ 2

c λ̂n > 0, gap,

(35)

where the contact surface is divided into three non-intersecting zones: γ̄ 2•
c stick zone, γ̄ 2∗

c slip zone and γ 2
c \ γ̄ 2

c non-
contact (gap) zone, representing the three possible contact statuses (stick, slip and gap). Thus, the integral contribution
of the i th contact element to the total virtual work can be written as:

δW c
i =


∂Ω2

i


Fx Fλ

T
·


δx
δλ


d∂Ω2

i , (36)

where the terms Fx and Fλ are vectors corresponding to forces acting on the virtual geometrical displacements δx
and supplementary conditions acting on the virtual Lagrange multipliers δλ (contact forces), respectively [58]. In the
framework of the finite element method, the first vector within the integral of Eq. (36) denotes the residual vector,
while the second vector represents the degrees of freedom, which comprise both primal and dual variables.

Since the nodal normal vectors required for the Nagata interpolation are obtained by weighted average of adjacent
facets (see Section 3.3), the patch geometry also depends on the nodes that form the edges attached to the master patch.
Thus, the full linearization of the contact element comprises the nodes (three or four) associated with the master patch
and all neighbouring ones coupled through the normal vectors [26]. Nevertheless, in order to preserve the local support
of the new contact elements, the coupling with the neighbouring facets is neglected in this study, i.e. the variation of
the nodal normal vectors is not taken into account. This simplification provides a banded structure for the global
tangent matrix due to the low surface connectivity [17]. Indeed, the nonzero pattern of the global tangent matrix
resulting from the surface smoothing procedure is identical to the one obtained with the faceted surface description.
On the other hand, this linearization is not sufficient to ensure quadratic convergence in the iterative solution scheme.
Considering the contact element composed by a quadrilateral Nagata patch (four master nodes), according to (35), the
closed form of the residual vectors for stick, slip and gap contact statuses is given by:

δW c
stick =



λ̂nn + λ̂t

−w1(λ̂nn + λ̂t)

−w2(λ̂nn + λ̂t)

−w3(λ̂nn + λ̂t)

−w4(λ̂nn + λ̂t)

gnn + gt


·



δxs

δxm
1

δxm
2

δxm
3

δxm
4

δλ


, (37)

δW c
slip =



λ̂n(n − µt)

−w1(λ̂n(n − µt))

−w2(λ̂n(n − µt))

−w3(λ̂n(n − µt))

−w4(λ̂n(n − µt))

gnn − (λt + µλ̂nt)/ε


·



δxs

δxm
1

δxm
2

δxm
3
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, (38)
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δW c
gap =



0
0
0
0
0

−λ/ε


·



δxs

δxm
1

δxm
2

δxm
3

δxm
4

δλ


, (39)

where the tangential slip direction involved in (38) is defined by:

t = λ̂t

λ̂t

 . (40)

The action–reaction principle expressed by the momentum equilibrium at the contact interface is introduced by the
weights wi associated to the master nodes. This means that the contact force arising in the slave node is distributed
on the master nodes, according to the local coordinates of the closest point projection. In the present study, the weight
associated to each master node is obtained from the partition of the Nagata patch area through the contact point
coordinates. The expressions for the weight associated to each master node in case of quadrilateral Nagata patches
takes the form:

w1 = (1 − η̄)(1 − ζ̄ ), w2 = η̄(1 − ζ̄ ), w3 = η̄ζ̄ and w4 = ζ̄ (1 − η̄), (41)

where the local coordinates of the contact point are calculated through the closest point projection. The residual
vectors (37)–(39) for contact elements with triangular Nagata patch are obtained in a similar way, containing three
lines for the master nodes and different associated weights, which can be found in [71].

The nonlinear and partially non-differentiable system of equations, resulting from the standard finite element
assembly procedure of structural and contact elements, is solved using the generalized Newton method [10,14,20].
Then, the tangent contact matrix for each contact status needs to be computed, which does not takes into account the
variation of the nodal normal vectors. The elemental contact Jacobian matrix is defined through the partial derivatives
of the vectors Fx and Fλ present in (36), expressed by:

Jc
=


∂Fx

∂x
∂Fx

∂λ
∂Fλ

∂x
∂Fλ

∂λ

 , (42)

which changes according with the contact status (gap, stick and slip).
Taking into account (37), the elemental Jacobian matrix of the contact element (four master nodes) for the stick

contact status is given by:

Jc
stick =



εI −w1εI −w2εI −w3εI −w4εI I

−w1εI w1w1εI w1w2εI w1w3εI w1w4εI −w1I

−w2εI w2w1εI w2w2εI w2w3εI w2w4εI −w2I

−w3εI w3w1εI w3w2εI w3w3εI w3w4εI −w3I

−w4εI w4w1εI w4w2εI w4w3εI w4w4εI −w4I

I −w1I −w2I −w3I −w4I 0


, (43)

where I is the second order identity tensor. Since the stick contact status imposes zero displacement between the
slave node and the master surface [72], the local frame defined on the master surface is fixed in all Newton iterations
within an increment. Thus, the solution can be considered path-independent, allowing to simplify the Jacobian matrix
(symmetric) without affecting the convergence rate of the Newton method [73]. Concerning the slave node with slip
status, the elemental contact Jacobian matrix developed by Heege and Alart [31] takes into account the curvature of
the master surface. It is obtained from (38) considering the gradient of the unit normal vector at the contact point,



D.M. Neto et al. / Comput. Methods Appl. Mech. Engrg. 299 (2016) 283–315 301

stated as:

Jc
slip =



εG −w1εG −w2εG −w3εG −w4εG M
−w1εG w1w1εG w1w2εG w1w3εG w1w4εG −w1M
−w2εG w2w1εG w2w2εG w2w3εG w2w4εG −w2M
−w3εG w3w1εG w3w2εG w3w3εG w3w4εG −w3M
−w4εG w4w1εG w4w2εG w4w3εG w4w4εG −w4M

G −w1G −w2G −w3G −w4G
1
ε
(M − I)


, (44)

where the second order tensor M, which is independent of the master surface curvature is defined as:

M = (n − µt) ⊗ n + ρ(I − n ⊗ n − t ⊗ t), with ρ = −µλ̂n

λ̂t

 , (45)

where ρ ∈ [0, 1] is a scaling factor. The supplementary curvature terms can be easily identified in the tensor G, since
they are coupled to the gradient of the normal vector:

G = (n − µt) ⊗ ∇xgn + ρ(I − n ⊗ n − t ⊗ t)

+
1
ε


(n − µt) ⊗ λ+ λ̂nI − ρ {n ⊗ (λ+ εg) − ((λ+ εg) · n)(t ⊗ t − I)}


∇xn. (46)

Note that the elemental contact Jacobian matrix for the slip status (44) is non-symmetric due to the non-associativity
of the Coulomb friction law and the curvature of the master surface [10,31]. Finally, in case of gap contact status, the
elemental contact Jacobian matrix is easily obtained from (39), written as:

Jc
gap =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −(1/ε)I

 , (47)

which is obviously a symmetric matrix.
The structure of the elemental Jacobian matrix (node-to-Nagata contact element) derived for each contact status

(43), (44) and (47) can be represented by blocks. The first five rows/columns create a block comprising information
related with the slave node and the corresponding quadrilateral Nagata patch (four master nodes). The last matrix
row/column contains the gradient of the supplementary function, necessary to evaluate the nodal contact force. Thus,
the penultimate row and column of the elemental Jacobian matrix are removed when the node-to-Nagata contact
element is defined for a triangular Nagata patch (three master nodes). Note that the dimension of the elemental
contact Jacobian matrices provided with the Nagata patch in the master surface description is exactly the same as
in the classical node-to-segment contact element. Therefore, opposed to other surface smoothing methods that adopt
Spline interpolation [17,23], the banded structure of the global tangent matrix is maintained as a result of adopting the
local support of the Nagata interpolation.

5. Numerical examples

The proposed contact surface smoothing method was implemented in the in-house finite element code
DD3IMP [74,75]. Four numerical examples were selected to assess the accuracy, robustness and performance of the
new surface smoothing method based in the Nagata patch interpolation. All examples comprise the frictional contact
between two deformable bodies involving large deformation and large sliding. The frictionless ironing problem is the
first example considered, which was proposed by Sauer [76]. The second example involves the contact between two
curved beams with elastoplastic material behaviour, which was introduced by Yang et al. [36] in the context of the
mortar method. The third example comprises the sliding of a cylindrical contactor within a half-tube, firstly proposed
by Krstulovic-Opara et al. [27]. The last example involves the rotation of two hollow concentric spheres with an initial
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Fig. 14. Initial configuration of the frictionless ironing problem between deformable bodies (dimensions in mm).

overlap, which is a severe benchmark for large sliding contact between spherical surfaces. The results obtained with
the smoothed contact surface description are compared with the ones achieved through the standard faceted surface
description, highlighting the advantages of the presented smoothing scheme. The numerical simulations were carried
in a laptop equipped with an Intel R⃝ CoreTM i7-3630QM processor running at 2.4 GHz and the Windows 8.1 (64-bits
platform) operating system.

5.1. Frictionless ironing problem

The first example considers a deformable half-cylinder sliding over a deformable block, as shown in Fig. 14. This
example is identical to the frictionless ironing problem reported by Sauer [76], and it is used to study the convergence
behaviour of the surface smoothing method with mesh refinement. The half-cylinder (radius of 10 mm) is pressed into
the elastic block (dimensions 100 × 20 mm) and then moved horizontally. A vertical displacement of 4 mm is applied
to the top of the cylinder, followed by a horizontal frictionless sliding of 2.5 mm, as illustrated in Fig. 14. The bottom
surface of the block is fixed. Both bodies are assumed elastic and isotropic, considering E = 30 MPa and ν = 0.30
for the cylinder and E = 10 MPa and ν = 0.30 for the block. Since the cylinder is 3 times stiffer than the block, it
is chosen as master body. Both bodies are discretized with 8-node hexahedral finite elements, assuming plane strain
conditions. Three different finite element meshes are considered, defined by the parameter m ∈ {3, 4, 5}, where
the number of elements along the height of the block is given by 2m (m = 3 is the mesh shown in Fig. 14). For a
unitary increase of m, each element is subdivided into 4 smaller elements. Hence, the total number of finite elements
composing the half-cylinder and the block is 21 × 22m−5 and 5 × 22m , respectively.

The comparison between faceted and smoothed contact surface description methods is presented in Fig. 15, for the
frictionless ironing problem. The deformed configuration of the bodies at the end of sliding is slightly different due to
the definition of the contact interface. The faceted description of the master surface yields the non-physical penetration
of the master nodes into the slave body (block), as highlighted in Fig. 15(a). On the other hand, smoothing the curved
surface of the cylinder with Nagata patches improves the definition of the contact interface and, consequently, the
evaluation of the contact kinematics. In fact, the apparent penetration of the master nodes into the slave body is
significantly reduced (see Fig. 15(b)). The distribution of the first stress invariant I1 = tr(σ) of the Cauchy stress
tensor, at the end of sliding, is also presented in Fig. 15. The excessive penetration of the cylinder into the block
reduces slightly the maximum (negative) value of the first stress invariant. Nevertheless, its distribution is similar
using different approaches to describe the master contact surface.

The horizontal contact force evolution during the sliding, obtained with each surface description method (faceted
and smoothed), is presented in Fig. 16(a) for three different finite element meshes. For the frictionless case considered
in this example, the horizontal contact force Fx should be zero. Nevertheless, the discontinuity of the surface normal
vector field induced by the faceted contact description produces important non-physical oscillations in the contact
force, as shown in Fig. 16(a). On the other hand, smoothing the master surface with Nagata patches yields insignificant
oscillations in the contact force. In fact, adopting the surface smoothing method, the maximum value of |Fx | is about
0.1 N for the coarsest mesh (846 nodes), while the standard bilinear surface representation provides a maximum
force of approximately 0.5 N for the finer mesh (12,060 nodes). The convergence behaviour with the finite element
mesh refinement is presented in Fig. 16(b) for both surface description methods, using the three nested meshes. The
amplitude of the contact force oscillations decreases for increasing mesh refinement, as expected. For the same finite
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Fig. 15. Deformed configuration of the bodies involved in the ironing problem with stress invariant I1 = tr(σ) contours for: (a) faceted contact
surface; (b) smoothed contact surface.

Fig. 16. Comparison between faceted and smoothed surface description methods in the frictionless ironing problem: (a) oscillations in the
horizontal contact force evolution; (b) maximum value of horizontal contact force as function of the mesh refinement.

element discretization, the error in the horizontal contact force component is much lower for the smoothed than for
the faceted description of the master surface.

5.2. Contact between curved beams

The second example was proposed by Yang et al. [36] and comprises contact between two curved beams (see
Fig. 17) with large deformation and large sliding. This problem involves both material (elastoplastic behaviour) and
geometric nonlinearities. The lower beam is fixed and the upper beam is subjected to a horizontal displacement of
31.5 mm, as shown in Fig. 17. Both beams are modelled using an elastoplastic material with isotropic hardening. The
elastic material properties are taken as E = 689.56 MPa and ν = 0.32, while the plastic properties are given by the
yield stress σ0 = 31 MPa and the linear hardening rate h = 261.2 MPa. The two curved beams are discretized with
8-node hexahedral finite elements, as shown in Fig. 17, assuming plane strain conditions. The lower beam is defined
as master body and the upper beam is considered as slave body. Both frictionless and frictional response is assumed
between the beams. Two different values of friction coefficient are considered in this problem µ = 0.3 and µ = 0.6.

The configuration of the beams for 15 mm of prescribed displacement on the upper beam is presented in Fig. 18 for
both frictionless and frictional cases, illustrating the deformed mesh and the nodal contact forces. In the frictionless
case, the direction of the contact forces arising in the slave nodes is normal to the master contact surface (smoothed
with Nagata patches). On the other hand, taking into account the friction at the contact interface, the direction of the
nodal forces changes to produce a tangential component aligned with the slip direction, which is higher for larger
values of friction coefficient, as shown in Fig. 18.

The evolution of the total reaction force in the x-direction, for the upper beam, is presented in Fig. 19 for the
frictionless and frictional cases. Its amplitude increases for larger values of friction coefficient because the frictional
force (tangential component) is close to the x-direction (see Fig. 18). Besides, the transition from negative to positive
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Fig. 17. Initial configuration and boundary conditions for the contact problem between two curved beams, including the finite element discretization
(dimensions in mm).

Fig. 18. Deformed configuration of the beams and nodal contact forces (size of the arrow proportional to the force magnitude) considering:
(a) frictionless (µ = 0.0); (b) frictional (µ = 0.3); (c) frictional (µ = 0.6).

values of force occurs later (higher displacement) and more suddenly for larger values of friction coefficient, as
illustrated in Fig. 19. Adopting the faceted description of the master surface, the numerical simulation fails at 29 mm
of prescribed displacement for the higher value of friction coefficient (see Fig. 19). This is related with the curved
geometry of the master surface and the consequent deadzones in the normal projection, leading to severe problems in
the contact detection procedure. The application of Nagata patches in the smoothing of the master surface allows to
eliminate the non-physical oscillations observed in the contact force evolution. Moreover, the convergence is attained
for all values of friction coefficient using 55 displacement increments. The evolution of the total reaction force in the
y-direction, for the upper beam, is presented in Fig. 20 for the frictionless and frictional cases. In all cases, the force
increases until attaining its maximum value and then decreases to zero. The horizontal displacement for which the
maximum value of vertical force arises increases with the friction coefficient. On the other hand, the maximum value
of reaction force in the y-direction increases slightly with the friction coefficient, as shown in Fig. 20.

The equivalent plastic strain contour plot is presented in Fig. 21 for both frictionless and frictional cases, at 15 mm
of prescribed displacement on the upper beam. The plastic regions appear predominantly in the lower beam since
its diameter is higher (see Fig. 17). Besides, the equivalent plastic strain is lower in the region near the contact
area for higher values of friction coefficient, as illustrated in Fig. 21. This is related with the deformation mode of
the lower curved beam, which changes from convex to concave for the frictionless case (Fig. 21(a)). On the other
hand, considering the higher value of friction coefficient, the deformed configuration of the beam is approximately
straight, as shown in Fig. 21(c). In fact, for the considered prescribed displacement (15 mm), the reaction force in
the y-direction is lower for higher values of friction coefficient (see Fig. 20). The equivalent plastic strain distribution
predicted with this model is very similar to the one obtained by Areias et al. [77].

5.3. Cylindrical contactor sliding in a half-tube

The third example involves a cylindrical contactor sliding in a half-tube (see Fig. 22). This benchmark was proposed
by Krstulovic-Opara et al. [27] to assess the accuracy of the contact smoothing method in large sliding problems. The
dimensions of the cylindrical contactor are 2 ×2 ×1 mm with a curvature radius of 3 mm in the contact surface. The
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Fig. 19. Reaction force in the x-direction, for the upper beam, as function of its displacement for frictionless and frictional cases. Comparison
between faceted and smoothed master surface descriptions.

Fig. 20. Reaction force in the y-direction, for the upper beam, as function of its displacement for frictionless and frictional cases. Comparison
between faceted and smoothed master surface descriptions.

half-tube has an interior radius of 3 mm, thickness of 1 mm and 15 mm of length. Both bodies are modelled assuming
elastic material response. The properties of the cylindrical contactor are taken as E = 10 MPa and ν = 0.30, while
the half-tube is 10 times stiffer than the contactor, so the Young’s modulus and the Poisson’s ratio are defined as
E = 100 MPa and ν = 0.30, respectively. The cylindrical contactor is chosen as slave body and the half-tube is
considered the master body, defining the master contact surface. Both frictionless and frictional (Coulomb friction
law with µ = 0.15) response is considered. The contactor is pressed into the half-tube (overlap of δ = 0.05 mm)
and posteriorly moved 10 mm in the x-direction from the position illustrated in Fig. 22. The prescribed displacement
is applied at the upper surface of the contactor and the half-tube is clamped in the x Oy (cutting) plane. Both bodies
are discretized with 4-nodes tetrahedral finite elements, as shown in Fig. 22. Two distinct unstructured meshes are
adopted, a coarse mesh composed by 2855 finite elements (Fig. 22(a)) and a fine mesh comprising 6327 finite elements
(Fig. 22(b)).

Considering the coarse mesh, the evolution of the total reaction force in the x-direction is presented in Fig. 23 for
both frictionless and frictional cases. The smoothing of the master contact surface using Nagata patch interpolation
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Fig. 21. Deformed configuration of the beams with equivalent plastic strain contours considering: (a) frictionless (µ = 0.0); (b) frictional
(µ = 0.3); (c) frictional (µ = 0.6).

Fig. 22. Problem description for the cylindrical contactor sliding in a half-tube: (a) coarse mesh composed by 841 nodes; (b) fine mesh composed
by 1746 nodes.

allows to eliminate the oscillations in the contact force induced by the piecewise bilinear interpolation of the master
surface. In fact, the discretization of the tube using a relatively coarse mesh (Fig. 22(a)) leads to a bad approximation
of the cylindrical geometry, which is reproduced in the contact force evolution. On the other hand, since the accuracy
in the geometrical representation of the contact surface is significantly improved through the smoothing method (see
Section 3.2), the oscillations in the contact force are strongly reduced or eliminated, as shown in Fig. 23. Considering
the frictionless case, the total reaction contact force in x-direction (tangential component) is approximately zero when
using Nagata patches to define the master contact surface.

The influence of the mesh refinement on the tangential reaction force evolution is presented in Fig. 24 for the
frictional case, comparing the two approaches used to describe the master contact surface. As for the frictionless
case, the oscillations observed in the contact force resulting from the faceted surface description are significantly
reduced or eliminated with the surface smoothing scheme (see Fig. 24). Moreover, the accurate representation of the
contact surface (smoothing method) leads to a decrease in the total reaction force in the x-direction, converging to
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Fig. 23. Total tangential reaction force for frictionless and frictional cases, considering both faceted and smoothed descriptions of the contact
master surface (coarse mesh).

Fig. 24. Total tangential reaction force for both faceted and smoothed descriptions of the contact master surface (frictional case). Comparison
between coarse and fine mesh.

the solution obtained with the fine mesh. In fact, the average value of contact force obtained with the fine mesh using
the piecewise bilinear surface representation is similar to the one obtained with the coarse mesh using the surface
smoothing approach, as illustrated in Fig. 24. The difference in the contact force evolution obtained with the coarse
and fine meshes, using the contact surface smoothing method, results from the better description of the half-tube
geometry, i.e. more finite elements in contact and non-contact zones.

The von Mises stress distribution in the contactor and half-tube, at the end of sliding, is presented in Fig. 25 for
both finite element meshes, using different approaches to describe the master contact surface (faceted and smoothed).
The application of Nagata patches leads to a reduction of the stress field value for both meshes studied. Indeed, the
cylindrical geometry of the half-tube (master contact surface) defined by the piecewise bilinear interpolation is more
interior than the smoothed surface, thus generating higher stress values, as shown in Fig. 25. On the other hand, the
refinement of the finite element mesh used to describe the deformable bodies allows to predict more accurately the
stress field. Moreover, the stress field obtained with the coarse mesh using the surface smoothing scheme (Fig. 25(b))
is similar to the one provided by the fine mesh with the surface smoothing (Fig. 25(d)).
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Fig. 25. von Mises stress distribution in the contactor and half-tube: (a) coarse mesh and faceted surface description; (b) coarse mesh and smoothed
surface description; (c) fine mesh and faceted surface description; (d) fine mesh and smoothed surface description.

Table 1
Computational performance of the cylindrical contactor sliding in a half-tube problem for two distinct
finite element meshes.

Coarse mesh Fine mesh
Faceted Smoothed Faceted Smoothed

No. increments 101 101 103 101
Average no. iterations 5.9 5.0 6.1 5.0
Computational time (s) 16.6 14.5 45.4 33.0

The computational performance of this example is analysed in Table 1, considering only the sliding phase. The
number of increments required to complete the simulation is similar for all models. Nevertheless, in order to overcome
some convergence problems arising in the fine discretization with faceted surface description, the increment size is
automatically reduced through the rmin strategy [78]. Indeed, the discontinuity of the surface normal vector field
induced by the faceted description generates some convergence problems in the closest point projection (switching
between two adjacent facets). Adopting the piecewise bilinear interpolation for the contact surface, the average
number of iterations required to achieve convergence in each increment is approximately 6, while the smoothing
of the master surface requires an average of 5 iterations. Although the smoothing procedure requires additional
linearization cost, the convergence rate is improved due to the quasi-G1 continuity between patches, avoiding the
above mentioned problems. Therefore, the application of the smoothing approach reduces the total computational
time for both discretizations analysed. The reduction is higher for the fine mesh (approximately 27%) because the
total number of increments is lower (see Table 1).
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Fig. 26. Two concentric hollow spheres with initial overlap undergoing large sliding, including dimensions and material properties.

Fig. 27. Finite element mesh of the concentric hollow spheres: (a) coarse mesh with 484 nodes; (b) fine mesh with 1828 nodes.

5.4. Rotation of hollow concentric spheres

The last example is inspired in the contact problem proposed by Puso and Laursen [79], where two concentric
spheres are pressurized internally and then rotated relative to each other. In the present study, the two concentric
hollow spheres present an initial overlap (δ = 1 mm) and are rotated relative to each other producing large sliding, as
shown in Fig. 26. The outer hollow sphere is fixed at its exterior radius, while the interior radius of the inner hollow
sphere is rotated 90◦ counter-clockwise. The main dimensions of the spheres are listed in Fig. 26, as well as the
elastic material properties (identical for both spheres). Taking advantage of the symmetry conditions, only one half
of the hollow spheres is modelled. Both spheres are discretized with 8-node hexahedral finite elements, adopting two
different structured meshes, a coarse mesh composed by 216 finite elements (Fig. 27(a)) and a fine mesh comprising
864 finite elements (Fig. 27(b)). Both frictionless and frictional cases are considered.

The influence of the master–slave selection on the numerical results is analysed using the coarse mesh and consid-
ering the frictionless contact. Either the outer or the inner hollow sphere can be assigned as master body. The torque
evolution (measured in the interior radius of the inner hollow sphere) as a function of the rotation angle is presented
in Fig. 28, considering the two alternatives to define the master surface. The faceted description of the master surface
leads to strong oscillations in the resulting torque, particularly when the outer hollow sphere is assigned as master
body, as shown in Fig. 28. Since the mesh adopted for the spheres presents six finite elements to describe 90◦ of the
circumferential direction (see Fig. 27(a)), six waves are also generated in the torque evolution. On the other hand, the
application of the Nagata patches in the smoothing of the master surface leads to a constant torque evolution being its
value approximately zero (frictionless case), as shown in Fig. 28. In fact, for this case the numerical solution is some-
what independent of the selected master surface (outer or inner hollow sphere). A similar behaviour can be obtained
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Fig. 28. Influence of the master–slave selection in the torque evolution (coarse mesh). Comparison between faceted and smoothed master surface
descriptions.

with the two-half-pass formulation, recently proposed by Sauer and De Lorenzis [80], where the local equilibrium
across the contact interface is not enforced a prior due to the unbiased treatment of both contact surfaces.

The deformed configuration of the hollow spheres for a rotation angle of 7.5◦ is presented in Fig. 29 considering the
frictionless contact, highlighting the influence of the master–slave selection on the nodal contact forces. The numerical
solution obtained with the piecewise bilinear interpolation of the master surface is strongly dependent on the choice
of the master body. When the outer hollow sphere is assigned as master body, the enforcement of the impenetrability
conditions at the slave nodes yields a large gap for the master nodes (see Fig. 29(a)), producing very high nodal contact
forces. Alternatively, the selection of the inner hollow sphere as master body leads to the penetration of the master
nodes into the slave body, as shown in Fig. 29(c). Thus, the resulting nodal contact forces are lower (the magnitude of
the arrows depicted in figure was increased 5 times for visualization purposes). On the other hand, the smoothing of
the master surface with Nagata patches allows the slave nodes to apparently “penetrate” the opposing master body, as
highlighted in Fig. 29(b) and (d). Nevertheless, the deformed configuration obtained by switching the master and slave
surfaces is identical for both situations, as well as the magnitude of the nodal contact forces, which is in accordance
with the torque evolution presented in Fig. 28.

Considering friction at the contact interface between the spheres (Coulomb friction coefficient of µ = 0.1),
the torque obtained with the coarse and fine meshes (see Fig. 27) is presented in Fig. 30 for both master surface
description approaches. Taking into account the results obtained for the frictionless case (Fig. 28), the inner hollow
sphere is defined as master body in the frictional case. The representation of the master surface using the piecewise
bilinear interpolation leads to severe oscillations in the torque, particularly for the coarse mesh. The amplitude of the
oscillations is reduced with the mesh refinement, while its frequency increases to double (due to the mesh refinement
in the circumferential direction). Nevertheless, the torque value is always underestimated due to the admissible overlap
of the master nodes into the slave body (see Fig. 29(c)), which reduces the contact pressure and, consequently, the
frictional force. On the other hand, the smoothing of the master surface with Nagata patches yields a torque that
increases from zero to a constant value (sliding of the contact interface), as shown in Fig. 30. Its constant value is
approximately 33 kN m, which increases approximately 2% with the mesh refinement.

The hollow spheres were also discretized with unstructured meshes of 8-node hexahedral (Fig. 31(a)) and 4-node
tetrahedral (Fig. 31(b)) finite elements, to highlight the ability of the proposed surface smoothing method. The mesh
defined by hexahedral finite elements is composed by 626 slave nodes (interior surface of the outer hollow sphere),
while the mesh of tetrahedral elements contains 468 slave nodes. Concerning the number of facets defining the master
contact surface (exterior surface of the inner hollow sphere), the discretization with hexahedral finite elements yields
371 quadrilateral finite elements, while the mesh of tetrahedral elements involves 456 triangular finite elements.

The torque evolution obtained with the unstructured meshes is presented in Fig. 32, which also compares faceted
with smoothed master surface descriptions. The piecewise bilinear description of the master surface produces
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Fig. 29. Deformed configuration and nodal contact forces (size of the arrow proportional to the magnitude) for a rotation angle of 7.5◦: (a) outer
sphere defined as master (faceted surface); (b) outer sphere defined as master (smoothed surface); (c) inner sphere defined as master (faceted
surface) with arrows increased 5 times for visualization purposes; (d) inner sphere defined as master (smoothed surface).

Fig. 30. Influence of the finite element mesh refinement in the torque evolution for the frictional case. Comparison between faceted and smoothed
master surface descriptions.

oscillations in the torque evolution, which are smaller than in the case of the fine structured mesh (see Fig. 30).
Furthermore, this surface description method yields a torque significantly lower than the one obtained with the
smoothed description of the master surface, as shown in Fig. 32. This is related with the inaccurate representation
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Fig. 31. Unstructured discretization of the hollow spheres using: (a) 8-node hexahedral finite elements (2004 nodes); (b) 4-node tetrahedral finite
elements (1320 nodes).

Fig. 32. Torque evolution with the rotation angle adopting unstructured finite element meshes. Comparison between faceted and smoothed master
surface descriptions.

of the contact master surface (always interior to the smoothed surface) and, consequently, excessive penetration of the
master nodes into the slave body. On the other hand, the adoption of the surface smoothing method leads to a torque
evolution approximately constant (33 kN m), which is similar to the one obtained with the structured meshes (Fig. 30).
The effect of the surface bias resulting from the master–slave approach is less evident for unstructured meshes due to
the arbitrarily distribution of the slave nodes on the master surface. Nevertheless, considering the outer hollow sphere
defined as master body, the faceted description of the master surface provides a torque value significantly higher than
applying the smoothing method.

The computational performance of the numerical simulations carried out using unstructured meshes is presented
Table 2, for 8-node hexahedral and 4-node tetrahedral finite elements. The required number of increments is
considerably higher in the faceted surface description than when using the surface smoothing method. Indeed, in
order to overcome the convergence problems caused by the discontinuities in the surface normal vector field (typical
of the faceted surface description), the increment size is automatically reduced. Concerning the number of iterations
required in each increment, the average value is slightly lower when the master surface is smoothed with Nagata
patches, as shown in Table 2. For this example, the computational time is predominantly dictated by the total number
of increments. Consequently, applying the surface smoothing method reduces significantly the computational time.
The reduction is about 40% using hexahedral finite elements in the discretization of the spheres and approximately
36% when the mesh is composed by tetrahedral finite elements. Since the number of nodes involved in the hexahedral
finite element mesh is higher than in the tetrahedral finite element mesh (see Fig. 31), the computational time is
substantially lower in the former mesh (see Table 2).
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Table 2
Computational performance of the two hollow concentric spheres problem considering unstructured
finite element meshes.

Hexahedral finite elements Tetrahedral finite elements
Faceted Smoothed Faceted Smoothed

No. increments 114 58 96 54
Average no. iterations 5.4 5.2 5.1 5.0
Computational time (s) 167.7 99.3 35.7 22.7

6. Conclusions

A new simple and effective 3D surface smoothing method has been presented for the numerical modelling of
frictional contact problems between deformable bodies involving large sliding. The master surface is defined using
Nagata patches to interpolate the low order finite element surface mesh at the nodes. The local support of the
Nagata interpolation allows to smooth both regular and irregular surface meshes (arbitrary mesh topology), requiring
only the surface normal vector at the nodes. These normal vectors are given by averaging the normal vectors of
the facets adjacent to the master node. The smoothed surface is used to evaluate the kinematic contact variables,
providing a description of contact phenomena closer to the physical reality. The smoothing method leads to significant
improvements in the geometrical representation of the master surface in comparison with the piecewise bilinear
surface representation. The original curvature is recovered with a relatively coarse mesh, ensuring quasi-G1 continuity
between patches. Therefore, the numerical simulation of contact problems based on implicit methods is considerably
improved in terms of robustness, since the well-known convergence problems associated with the standard faceted
description of the master surface (C0 continuity) are eliminated or strongly reduced.

Four numerical examples are used to highlight the advantages of the developed contact surface smoothing method.
The results show a significant improvement in the accuracy, robustness and performance of the numerical simulations,
when compared to the traditional piecewise faceted contact surface description. The non-physical oscillations in
the contact forces evolution, resulting from the contact surface normal vector field discontinuities, are eliminated
or strongly reduced with the surface smoothing approach, particularly for large sliding between curved contact
surfaces. Furthermore, the smoothed master surface reduces the number of increments/equilibrium iterations required
to perform the simulation due to superior convergence behaviour, i.e. the robustness is increased. Consequently, the
computational time is reduced, improving the overall computational performance of the analysis.
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