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a b s t r a c t

The contact surface description is a very important field in the numerical simulation of problems involving
frictional contact, which are among the most difficult ones in continuum mechanics, as is the case of
sheet metal forming simulation. In this paper, a methodology to control the Nagata patch interpolation of
piecewise linearmeshes is proposed, in order to improve its applicability for tool surface description used
in the numerical simulation of sheet metal forming processes. The interpolation can be applied either to
triangular and quadrilateral Nagata patches, as well as structured and unstructured patches. The normal
vectors needed for the Nagata interpolation are obtained through two distinct strategies. The first uses the
information available in the CAD surfacemodel,while the second resorts only to the piecewise linearmesh
model information. In order to evaluate the interpolation accuracy, the Nagata patch is applied to describe
a sheetmetal forming complex shape part tool geometry. The results obtained show that, regardless of the
strategy used to evaluate the surface normal vectors, the use of the proposed Nagata patch interpolation
enables a large improvement in the geometric accuracy when compared with the models composed by
piecewise linear elements. The use of CAD surface geometry to evaluate the surface normal vectors leads
to the best Nagata patch interpolation in terms of shape and normal vector field accuracy.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The sheet metal forming process is widely used in several
industrial areas, particularly in the automotive industry, to
produce large quantities of sheet metal components such as inner
parts, stiffeners and outer body panels. The quality of the product
part is dictated by the tools design, process parameters, shape
and material of the blank. Since the manufacturing of forming
tools is both costly and time consuming, they play a central role
in the global cost of a stamped part. The industrial desires for
reducing both the conception time and the cost associated to
the trial-and-error forming tools design process, has led to the
mandatory application of the finite element method to perform
the virtual try-out. [1,2]. In fact, this virtual try-out process
permits an enormous time and cost reduction in the die design
process [3], since it allows to predict the deformed shape of
blank, the thickness and strain distribution, and even defects such
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as fracture, necking and wrinkles [4]. During the last years, the
growing increase of computer technology has led to the decrease
of computer time and memory requirements. At the same time,
significant attention has been devoted to increase the accuracy
and robustness of the algorithms in order to achieve reliable sheet
metal forming numerical simulation results [5–7]. In order to
take advantage of the recent multi-core processors, several high
performance computing techniques have been incorporated in
the computational applications in order to increase their speed-
up [8,9]. These improvements allow combining the numerical
simulationwith optimization procedures,which typically require a
great number of iterations to achieve a solution and, subsequently,
high computation times [10].

The finite element model used in the numerical simulation of
sheet metal forming processes is usually divided in two parts: the
metal sheet and the forming tools [11]. In a wide range of tech-
nological processes, it is possible to assume that the forming tools
behave as rigid bodies. Therefore, the model can consider only the
outer surfaces of the tool as contact surfaces. On the other hand, the
deformable body (metal sheet) is usually discretizedwith the aid of
a finite elementmesh, onwhich all numerical variables involved in
the simulation are evaluated. Recently, Hughes et al. [12] proposed
the concept of isogeometric analysis, which employ NURBS to rep-
resent the geometry of the deformable body and uses the NURBS
shape function to approximate the field variables, avoiding the use
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of the classic finite element mesh. The application of this new con-
cept in problems involving large deformation and frictional con-
tact can lead to improved results in contact treatment, since it
uses the exact geometry. However, some difficulties arise due to
the nonlinear nature of contact problems [13]. In fact, the nu-
merical simulation of sheet metal forming processes always com-
prises the following three nonlinearities: geometric, material and
frictional contact, which are solved using incremental-iterative
solution procedures. However, the numerical treatment of the in-
teractions resulting from the frictional contact between the sheet
and the forming tools is quite challenging in terms of robustness
issues, due to the extremely nonlinear and non-smooth character
of the contact operators [14,15]. During the forming process, the
boundary conditions resulting from contact are constantly chang-
ing. Therefore, the contact status of every deformable body node
candidate to establish contact with the forming tools, needs to
be updated in each increment. This procedure starts with the so-
called contact search algorithm, which should identify for each
node candidate to establish contact, the position point on the tool
surface where contact can occur. Typically the contact search algo-
rithm is divided into two phases: global and local search [16,17].
In each increment, the contact status of every node also needs to
be updated during the iterative procedure, by applying the local
search algorithm. Therefore, the computational effort associated to
the contact search algorithm strongly influences the computation
time. In fact, recent studies showed that the computational time
demanded by the local search is about 90% of the total time spend
in the contact search [18]. The main task involved in this phase is
the projection of each candidate node onto the tool surface, which
implies solving a nonlinear system of equations.

The accurate description of the tool geometry is a very
important issue to take into account in the numerical simulation
of forming processes, particularly in the analysis of springback
phenomena [19] and also in processes where the contact area is
quite small with respect to the component size [20]. In case of
rigid tools, several schemes have been developed to define the
tool surfaces geometry, which can be categorized in four schemes:
(i) the analytical function; (ii) the finite element mesh, (iii) the
piecewise linear mesh, and (iv) the parametric patch [21]. The
first scheme is very useful for simple tool geometries, since it
is composed by an assembly of simple analytical shapes [21,22].
However, this scheme is unfeasible for more complex models,
leading to the need to apply either the finite element mesh
scheme or the piecewise linear approximation, both requiring a
disproportionately finer mesh in curved areas in order to obtain
a proper tool description [23]. Nevertheless, the artificial non-
smoothness of the contact surfaces described by both schemes
leads to artificial oscillations in the contact forces, non-realistic
pressure jumps, contact cycling and can also lead to the divergence
of the iterative procedure [24,25]. Hence, to overcome these types
of problems, different strategies have been proposed to smoothly
interpolate the given piecewise linear mesh, leading to significant
improvements in the solution accuracy [26,27]. Typically, this
operation involves the application of parametric patches in the
surface description, such as Bézier [28], B-spline [29,30] and
NURBS [25]. Nevertheless, since these interpolation methods were
originally developed for 2D problems, their extension for 3D
surfaces has the inherent disadvantage that they cannot represent
surfaces with arbitrary mesh typology/topology. In this context,
Puso and Laursen [31] proposed amethod usingGregory patches to
smooth the contact surfaces in 3D problems, which is suitable for
unstructuredmeshes of quadrilaterals. However, all the smoothing
methods presented above have in common the high order of the
interpolation adopted, which leads to higher computational cost,
due to the higher complexity of the local search procedure [32].
The other possible strategy to use the parametric patch scheme
is applying directly the model delivered from the CAD system.
Trimmed NURBS patches are commonly used in CAD systems due
to the natural difficultly of defining complex geometries with
untrimmed patches [33]. Hence, the algorithms required to deal
with trimmed patches are computationally more expensive, since
each patch presents a different validity domain, which must be
stored in memory. Furthermore, CAD models are known to be
plagued by geometrical or topological errors and inconsistencies.
Therefore, before using themodel it is always necessary to perform
some geometry repair, clean-up, and preparation. This laborious,
manual-intervention process is the rule, rather than the exception.
Must CAD model errors and inconsistencies (e.g., gaps/overlaps
between abutting surfaces) result from the lack of a robust
solution to the surface intersection problem. In fact, there is no
satisfactory theory on how to approximate the intersection curve
and, consequently, the trimmed surfaces [34]. Therefore, currently
the direct application of CAD models in finite element numerical
simulation requires a previous treatment of model, which limits
its application only to academic environment [35]. In fact, it is
not easy to avoid the CAD model errors and inconsistencies and,
consequently, circumvent the geometry repair step. Although,
meshing algorithms have attained a high degree of sophistication
and reliability, they basically reproduce the information available
in the CADmodel [34]. The adoption of the piecewise linear scheme
combined with a smoothing technique reduces the amount of
operations involved in the geometry repair step.

Recently, Nagata [36] proposed a new algorithm to interpolate
surfaces, which can be considered a smoothing technique for
piecewise linear meshes using parametric patches. The central
idea of the Nagata patch is the quadratic interpolation of a
curved segment, from the position and normal vectors at the end
points. The principal advantage of this method over the existing
ones is its ability to recover the surface curvature of models
discretized by both triangular and quadrilateral facets, as well as
allowing the use of structured and unstructured meshes. Besides,
the biquadratic patch degree (minimum required to describe a
curve) allows reducing the computational cost associated to the
local search algorithm, while the geometric accuracy attained is
acceptable even with a small amount of patches. The application
of this smoothing technique in tool surface description assures
C1 continuity in the vertices and quasi-C1 in the edges between
patches [20,36]. Therefore, this method can be considered as
slightly more complex than the piecewise linear approximation
and almost as accurate as the CAD representation. The main
drawback of thismethod is its incapacity to describe patcheswhich
present inflection points, since the interpolation degree is only
two. Thus, for particular cases, the algorithm can result in the
inversion of the patch orientation in conjunction with a very sharp
bending. This situation is prohibited when applied to tool surface
description, since it will lead to convergence problems in the local
contact search algorithm. Thus, the main subject of this work is
defining strategies to overcome this type of problems. Moreover,
some schemes to evaluate the required vertex normal vector are
presented and compared.

In this study, the original Nagata patch interpolation algorithm
is analyzed in order to better control its application for smoothing
piecewise linear meshes, used to describe the rigid contact
surfaces in sheet metal forming simulation. Thus, in the next
section the Nagata patch formulation for both triangular and
quadrilateral patches is briefly presented, in order to introduce
the method proposed to control the instabilities in the Nagata
patches interpolation. Afterwards, the Nagata patch interpolation
is applied to represent a circular arc and the interpolation accuracy
is evaluated using the radial and normal vector errors. Section 4
presents two approaches that can be applied to evaluate the
normal vector in each vertex of the piecewise mesh. One of the
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approaches uses the information of the surface geometry available
in CAD model, while the other uses only the information available
in the piecewise mesh. For this last approach, a methodology to
improve the normal vector approximation is proposed. Section 5
details the application of theNagata patch interpolation to describe
a complex sheet metal forming tool. Both approaches, to evaluate
the normal vector in each vertex, are employed in the Nagata
patch interpolation and compared. The accuracy of the Nagata
patch interpolation is evaluated through the shape and normal
vector errors and compared with the one achieved by the model
composed by piecewise linear elements, in order to highlight its
unique features for sheet metal forming tools description. Finally,
the main conclusions are summarized in Section 6.

2. Nagata patch formulation

Nagata [36] proposed a simple method for interpolating
surfaces discretized with piecewise linear elements in order to
recover the original geometry with good accuracy. Its simplicity
comes from the reduced interpolation degree and it requires only
the position and normal vectors in each vertex of the discretized
surface model. The interpolation of an edge is replaced by a curve
in the form:

x(ξ) = x0 + (x1 − x0 − c)ξ + cξ 2, (1)

where ξ is the local coordinate that satisfies the condition 0 ≤

ξ ≤ 1, and x0 and x1 are the position vectors of the edge ends.
The derivative of the Nagata curve, given in Eq. (1), is:

xξ (ξ) ≡
dx
dξ

= (x1 − x0) + (2ξ − 1)c, (2)

which should be orthogonal to the unit normal vectorsn0 andn1 at
the end points, i.e. satisfies the boundary conditions. The derivative
of the curve gives the tangential direction, necessary to calculate
the normal direction at each point on the Nagata curve.

The coefficient c, presented in Eqs. (1) and (2), adds the
curvature to the edge. Assuming that the curve given by Eq. (1)
is orthogonal to the normal vectors n0 and n1 at x0 and x1,
respectively, the vector c can be determined, minimizing its norm,
as follows:

c(x0, x1,n0,n1)

=


[n0,n1]

1 − a2


1 −a

−a 1


n0 · (x1 − x0)

−n1 · (x1 − x0)


(a ≠ ±1)

[n0, ±n0]

2


n0 · (x1 − x0)

∓n0 · (x1 − x0)


= 0 (a = ±1),

(3)

where a = n0 · n1, is the cosine of the angle between the two end
edge normal vectors and [n0,n1] represents a matrix with the first
column equal to vector n0 and the second equal to vector n1. At the
first step of the Nagata interpolation, each edge of the piecewise
facet is independently interpolated, and then the interior of the
patch is filled reproducing the boundary conditions. Since the
triangular and quadrilateral typologies of the piecewise facets are
the most usual in surface description methods, in the following
subsections the interpolation process is described for these Nagata
patches.

2.1. Triangular patches

Consider the triangular patch presented in Fig. 1(a). The
curvature of a piecewise linear element can be recovered by
interpolating each edge with the polynomial given by Eq. (1).
The input data necessary in the vertices v1, v2 and v3 are the
vectors corresponding to the position x00, x10 and x11, and to the
normal n00,n10,n11, respectively. In case of a triangular patch, the
a b

Fig. 1. Triangular Nagata patch interpolation: (a) sketch; (b) patch domain defined
in its local coordinates.

interpolated surface is approximated by the following quadratic
polynomial:

x(η, ζ ) = c00 + c10η + c01ζ + c11ηζ + c20η2
+ c02ζ 2, (4)

where x(η, ζ ) denotes the position vector of any point on
the patch. The triangular patch domain is defined in the local
coordinates η and ζ satisfying the condition 0 ≤ ζ ≤ η ≤ 1,
as shown in Fig. 1(b). The coefficient vectors of Eq. (4) are given by:

c00 = x00,
c10 = x10 − x00 − c1,
c01 = x11 − x10 + c1 − c3,
c11 = c3 − c1 − c2,
c20 = c1,
c02 = c2,

(5)

where c1, c2 and c3 are the vectors defined by Eq. (3) for the edges
(x00, x10), (x10, x11) and (x00, x11), respectively.

Partial differentiation of Eq. (4) is given by the following
expressions:

xη(η, ζ ) ≡
∂x
∂η

= c10 + c11ζ + 2c20η, (6)

xζ (η, ζ ) ≡
∂x
∂ζ

= c01 + c11η + 2c02ζ , (7)

which are required for evaluating the normal vector at any
arbitrary location on the patch.

2.2. Quadrilateral patches

The quadrilateral patch represented in Fig. 2(a) is interpolated
in a similar way as for the triangular patch. The necessary input
data for the vertices v1, v2, v3 and v4 are the position vectors
x00, x10, x11 and x01, and the unit normal vectors n00,n10,n11 and
n01, respectively. The vertices do not need to be coplanar. The
surface equation for quadrilateral patches is given by:

x(η, ζ ) = c00 + c10η + c01ζ + c11ηζ + c20η2
+ c02ζ 2

+ c21η2ζ + c12ηζ 2, (8)

where the patch domain in the local coordinates η and ζ is defined
as 0 ≤ η, ζ ≤ 1 (see Fig. 2(b)). The coefficient vectors in Eq. (8) are
given by:

c00 = x00,
c10 = x10 − x00 − c1,
c01 = x01 − x00 − c4,
c11 = x11 − x10 − x01 + x00 + c1 − c2 − c3 + c4,
c20 = c1,
c02 = c4,
c21 = c3 − c1,
c12 = c2 − c4,

(9)
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a b

Fig. 2. Quadrilateral Nagata patch interpolation: (a) sketch; (b) patch domain
defined in its local coordinates.

where c1, c2, c3 and c4 are the vectors defined by Eq. (3) for the
edges (x00, x10), (x10, x11), (x01, x11) and (x00, x01), respectively.

Partial differentiation of Eq. (8) is given by the following
expressions:

xη(η, ζ ) ≡
∂x
∂η

= c10 + c11ζ + 2c20η + 2c21ηζ + c12ζ 2, (10)

xζ (η, ζ ) ≡
∂x
∂ζ

= c01 + c11η + 2c02ζ + c21η2
+ 2c12ηζ . (11)

It should be mentioned that the above formulation can also be
extended to other general n-sided patches. However, the triangular
and quadrilateral piecewise facets are the most commonly used
by the mesh generator codes to describe surfaces of arbitrary
geometry [37].

2.3. Controlling the Nagata patch interpolation

In order to apply the Nagata patches interpolation to describe
the tool surfaces employed in the numerical simulation of sheet
metal forming process, the interpolation algorithmmust be robust
to ensure the efficiency of the contact search algorithm, the
numerical stability and good convergence speed of the numerical
simulations. The Nagata patch interpolation is a very flexible
shape modeling algorithm that can lead to very sharp surfaces,
which are undesirable and prejudicial when applied to frictional
contact problems. Therefore, some restrictions should be added to
the original formulation with the aim of avoiding the occurrence
of these cases, always retaining the central idea of the simple
quadratic interpolation originally proposed [36,38].

A single Nagata patch has no ability to describe a curve or
surface with inflection points due to its quadratic formulation.
Therefore, ideally during the discretization process, vertices should
be associated to all inflection points, in order to accurately define
the Nagata patch boundaries [39]. Fig. 3 shows an example of a
curve with an inflection point interpolated employing the Nagata
patch algorithm. It is visible that the attained approximation
presents an inversion of the curve orientation near to the vertex.
This type of solution is prohibited when using the Nagata patch
interpolation method to describe tool surfaces, since it does
not accurately represents the surface and, moreover, it will
lead to severe convergence problems in the local contact search
procedure.

The application of theNagata patch interpolation, both for curve
and surface descriptions, requires the information concerning the
position vector and the surface normal vector in each vertex,
as well as the connectivity of each piecewise element. The
position vectors and the connectivity can be obtained from
the piecewise linear approximation of the surface geometry
under study, which can be composed by either triangular or
quadrilateral elements. The surface normal vector definition
requires information that is unavailable in the piecewise linear
Fig. 3. Nagata interpolation applied to a curve presenting an inflection point
between the two end points.

mesh. When this information is not available, it is necessary to
determine a surface normal approximation, which results in a
Nagata patch interpolation dictated by the new inputs (vertex
normal vectors). The approximation of the normal vectors can lead
to Nagata interpolations with high curvature gradient near to the
vertices, which is undesirable for contact search algorithms.

As previously mentioned, the existence of Nagata patch
interpolations with inversion of curve orientation or high localized
curvature, are prohibited in the problem under analysis. An
alternative to overcome these problems, without compromising
too much the accuracy and keeping the information about the
vertices position and their normal vectors, is to adopt the linear
interpolation, as shown in Fig. 3 through the straight dashed line.
This solutionwas already proposed by Boschiroli et al. [40] to solve
the instability problems of the Nagata interpolation algorithm,
in order to apply this type of patches in computer graphics. In
their work, the authors highlight the localized problems associated
to the original Nagata interpolation, when applied to complex
piecewise meshes.

The original formulation, presented in the previous section, is
characterized by an algebraic singular case (a = ±1, in Eq. (3)),
which results in a linear interpolation, since c is equal to the null
vector. This singular interpolation case does not satisfy the im-
posed boundary conditions, i.e., the Nagata patch is not orthogonal
to the normal vectors given at the end points. Hence, the proposed
improvements to the originalNagata patch interpolation algorithm
consist on extending the singular case domain. This extension is
performed in order to prevent interpolations with a high curva-
ture variation, but keeping the original quadratic interpolation in
the maximum number of patches as possible.

The strategy adopted in [40] to extend the singular case domain
is based only in the value of parameter a (see Eq. (3)), which only
depends on the angle between the normal vectors at the end points
of each edge. In this study, the Nagata patch instability is identified
through the normal vectors at the end points and also using the
following normalized vector:

b =
x1 − x0
|x1 − x0|

, (12)

which has the direction of the vector joining the end points. The
presence of inflection points in the original geometry is identified
using the values of the angles between the normal end point
vectors and the vector b. When both vertex normal vectors contain
the same orientation relatively to vector b, i.e. the angle between
each normal vector and b is smaller (Fig. 4(a)) or higher than
90° (Fig. 4(b)), then the original geometry presents a inflection
point between the end points. This situation verifies the following
condition:

(n0 · b)(n1 · b) ≥ 0, (13)
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a b

Fig. 4. Controlling the Nagata patch interpolation when both normal vectors present, relatively to the vector b: (a) the same orientation (n0 · b ≥ 0 and n1 · b ≥ 0); (b)
opposite orientation (n0 · b ≤ 0 and n1 · b ≤ 0). Linear interpolation is applied if the normal vector n1 is located in the shaded zone.
Fig. 5. Controlling the Nagata patch interpolation when the normal vector of one
vertex is nearly perpendicular to vector b and the other one is away from the
orthogonal position. Linear interpolation is applied if the normal vectors are located
in a corresponding shaded zone.

which represents the multiplication of the dot products between
the normal vectors and the vector joining the end points. The
shaded zone in Fig. 4 represents the region where the normal
vector n1 should be located, according to Eq. (13), in order to adopt
the singular case, i.e. linear interpolation.

The second instability problem of the Nagata patch interpola-
tion, mainly occurs when the normal vectors in the vertices are
determined using an approximationmethod, and can be also iden-
tified by the relative orientation between the normal vectors and
the vector b. When the evaluated normal vector of one vertex is
nearly perpendicular to the vector b and the other one is away
from the orthogonal position, as shown in Fig. 5, then it is highly
probable that the Nagata interpolation will present a strong local-
ized change in curvature. The interpolation of this edge is included
into the singular case domain, when the following conditions are
verified:

(|n0 · b| < ε1 ∨ |n1 · b| < ε1) ∧ |(n0 · b) + (n1 · b)| > ε2. (14)

ε1 and ε2 are coefficients proportional to the angles β1 and β2 (see
Fig. 5), respectively. Since these coefficients present small values,
the following relationships are valid:

β1 = sin−1(ε1) ∼= ε1,

β2 =
1
2


sin−1(ε1 + ε2) − sin−1(ε1 − ε2)


∼= ε2.

(15)

The angle β1 limits the position of a normal vector nearly
perpendicular to vectorb, whileβ2 angle delimits the region for the
other normal vector away from the orthogonal position relative to
b. The shaded zone in the figure corresponds to the singular case
domain, where the bisectrix of the angle β2 is defined based on an
auxiliary angle γ , corresponding to the angle between n0 and b.

Fig. 6 presents an example of the Nagata patch interpolation
applied to two piecewise linear elements, showing the influence
of the selected values for the ε1 and ε2 parameters. The arrows
represent the normal vectors and the dashed lines correspond to
the piecewise linear interpolation of the geometry. The Nagata
curves are presented by the thick continuous line and their uniform
parametric coordinates (ξ ∈ [0, 1] with an increment of 0.1) are
represented using dashes over the curves.

The selected values for ε1 and ε2 have a strong impact both
in the stability and the accuracy of the interpolation. The original
formulation, without restrictions (ε1 = 0 and ε2 = ∞), is
presented in Fig. 6(a). As highlighted in the detail in this figure, the
Nagata curve obtained is non-uniform in the Cartesian coordinate
system (see the dashes distribution over the Nagata curve). This
non-uniformity can lead to convergence problems in the local
contact search algorithms. On the other hand, when the selected
value for ε1 is too high and the one selected for ε2 is too small,
the quadratic Nagata interpolation leads to a linear interpolation
for both piecewise elements, due to the very restrictive conditions
imposed (see Fig. 6(c)). The correct choice of ε1 and ε2 values
depends on the mesh topology (structured or unstructured)
but it is mainly dictated by the type of vertex normal vector
evaluation strategy adopted (exact or approximated vectors). They
can be adjusted by the user in order to avoid interpolations with
high localized curvature. However, according to the several tests
performed in this study, using different piecewise linear meshes
topologies and vertex normal vector evaluations, the values for
ε1 and ε2 parameters can be selected based only on the normal
vector evaluation strategy adopted. The parameter values selected
can be always less restrictive when the exact normal vector is
available. Nevertheless, the values selected for the other strategy
can always be applied when the exact normal vector is available,
leading to some avoidable linear interpolations. Furthermore, in
order to avoid instability problems of the Nagata interpolation
algorithm while keeping the accuracy, the maximum value for the
β1 angle is 4° (see Eq. (15)). In the example presented in Fig. 6(b)
the admissible β1 angle corresponds to 3°.

3. Interpolation applied to a curve: 2D geometry

This section is dedicated to the analysis of a 2D geometry,
the circular arc. Although this is a simple geometry, this type of
curve is always present in the 3D surfaces that define the most
common tools for sheet metal forming process. Constant radius
fillet surfaces and surfaces of revolution are typically adopted for
constructing smooth tool surfaces [37,41].

The accuracy of the Nagata patch interpolation is evaluated us-
ing the radial and normal vector errors. The Cartesian coordinates
of the Nagata interpolation for an arc of the circle with radius R
are given by the position vector x(ξ), applying Eqs. (1) and (3). The
Nagata curve approximates the arc of the circle with a radial error
defined in each curve point by:

δr(ξ) =
(x(ξ) − o) · nanalytical − R

R
× 100[%], (16)
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Fig. 6. Influence of ε1 and ε2 values in the Nagata patch interpolation behavior: (a) without restrictions presenting in detail the non-uniformity of the interpolation; (b)
using admissible values; (c) using very restrictive values.
a b

Fig. 7. Nagata patch and piecewise linear interpolation of a quarter-circle: (a) discretized by 1 element; (b) discretized by 2 elements.
where ξ satisfies the condition 0 ≤ ξ ≤ 1, o is the position vector
of the circle center and nanalytical is the unit normal vector to the
arc of the circle evaluated using the analytic function. This error
corresponds to the dimensionless distance between the Nagata
curve and the arc of the circle defined by the analytical function,
in the radial direction.

The Nagata curve approximates the arc of the circle with a
normal vector error defined by:

δn(ξ) = cos−1(nNagata(ξ) · nanalytical)[°], (17)

where ξ satisfies the condition 0 ≤ ξ ≤ 1 and nNagata(ξ) is the unit
normal vector to the Nagata curve interpolation, perpendicular to
the direction calculated using Eq. (2). This error corresponds to the
angular difference between the analytical and the approximated
normal vector (nNagata), expressed in degrees for each point of the
curve.

A unit quarter-circle is used to analyze the error associated
with the use of piecewise linear approximation and Nagata
interpolation for its description. Besides the vertices coordinates,
in order to apply the Nagata patch interpolation algorithm it is
necessary to know the normal vector in each vertex. The required
normal vector at each vertex was determined using the analytical
function. Fig. 7(a) and (b) compares the analytical function with
the Nagata patch and the piecewise linear interpolations, for
the quarter-circle discretized with 1 and 2 linear elements,
respectively. The Nagata patch interpolation results in a curve
which is always outside the circle arc, with amaximum radial error
at the mid point of the curve (ξ = 0.5) [19,42].

In order to study the influence of the mesh size on the
interpolation error, the quarter-circle is equally divided in 1 to
10 circle arcs/elements, which correspond to a normalized arc
length from 1.571 down to 0.157, respectively. The normalized arc
length corresponds to the division of the arc length by the radius
of the arc of the circle. Fig. 8 presents the comparison between
the piecewise linear mesh and the Nagata patch interpolation,
both in terms of maximum absolute radial error (Fig. 8(a)) and
normal vector error (Fig. 8(b)). It is possible to observe in Fig. 8(a)
that, in both approximations, the radial error decreases with the
decrease of the normalized arc length, thus converging to the
original geometry [36]. This figure also presents the trend lines
between themodulus ofmaximum radial error and the normalized
arc length, which shows that the order of convergence of the radial
error is quadratic and quartic for the piecewise linear mesh and
Nagata interpolation, respectively. Fig. 8(b) shows the evolution of
the maximum error in the normal vector for both the piecewise
linear mesh and the Nagata interpolation, as a function of the
normalized arc length. The maximum error in the normal vector
decreases with the decrease of the normalized arc length, similarly
to the radial error. By analyzing the figure, it is possible to observe
that the order of convergence of the normal vector error against
the normalized arc length is linear and cubic for the piecewise
linearmesh andNagata interpolation, respectively. The correlation
coefficients of the trend lines presented in Fig. 8, corresponding
to the Nagata patch interpolations are not equal to one since
the lengths of the Nagata curves and the arcs of circle are not
equal (see Fig. 7). This analysis was performed taking into account
the Nagata patch algorithm using the controlling methodologies
presented in Section 2.3. However, due to the simple and regular
geometry, the control conditions (see Eqs. (13) and (14)) are never
activated. Thus, the same solution can be achieved using the
original formulation [39].
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Fig. 8. Comparison between piecewise linear approximation and Nagata patch interpolation used to describe a quarter-circle: (a) maximum radial error modulus; (b)
maximum normal vector error.
Fig. 9. Algorithm used to evaluate the vertex normal vector from CAD geometry based on trimmed NURBS surfaces.
4. Vertex normal vector evaluation

Typically, tool models are provided to Computer Aided Engi-
neering (CAE) using exchange CAD formats. Thus, the information
available in CADmodel can be used to determine the normal vector
in each vertex of the piecewise mesh, in order to apply the Nagata
patch interpolation method. The proposed methodology to eval-
uate the normal vectors uses as inputs the neutral format IGES
(Initial Graphics Exchange Specification) to extract the informa-
tion concerning surface definition in the format of trimmedNURBS
(Non Uniform Rational B-Spline) surfaces [43,44]. However, some-
times only the piecewise linear mesh of the tools surface is avail-
able, hence only the vertices’ position and the connectivity of each
element are known. Thus, it is important to develop a strategy that
allows evaluating the vertex normal vector, based on the informa-
tion available only in the piecewise linear mesh. Two approaches
to estimate the normal vectors in the vertices of a piecewise mesh
have been presented in the literature. The first approach is based
on the determination of an interpolated surface on the vertex, such
that the vertex normal vector is calculated as being equal to the
surface normal vector [45–47]. The second approach consists on
determining the weighted average of the normal vectors of facets
adjacent to the vertex [48–51]. Due to its simplicity, the last ap-
proach was adopted in this work, where some algorithms for ap-
proximation of the vertex normal vector are presented.

4.1. Normal vector evaluated from CAD geometry

This algorithm is based on the tools definition using trimmed
NURBS surfaces, which is a type of parametric surfaces commonly
used in CAD software packages. The model definition using
trimmed NURBS surfaces can be extracted from the standard IGES
file format [44].

Fig. 9 presents schematically the proposed algorithm to
evaluate the normal vector based on trimmedNURBS,which can be
divided in three steps [39]. In order to determine the vertex normal
vector, it is necessary to know the parametric coordinates (u, v) of
each vertex of the piecewise linear mesh, on the model composed
by trimmed NURBS surfaces. Since the tools can be described with
a large number of trimmed NURBS surfaces, as shown in Fig. 9,
first a global search is performed to select the surfaces associated
to each vertex. The method used to perform the global search is
based in the global contact search algorithm proposed by Oliveira
et al. [17], which uses the coordinates of the middle point and
each vertex of the NURBS surfaces. After the candidate surfaces
pre-selection, the parametric coordinates (u, v) of each vertex are
evaluated by vertex projection on the surfaces. The mathematical
formulation of the projection algorithm adopted is presented in
the Appendix, which allows determining the admissible projection
point for the candidate surfaces. The selected surface is the one that
has the closest projection point to the vertex. The normal vector,
for each vertex of the piecewise linear mesh, is evaluated by the
cross product of the two partial derivatives determined for the
closest projection point.

4.2. Normal vector evaluated from piecewise linear mesh

When the CAD model geometry is not available, the normal
vector in each mesh vertex is approximated by a weighted sum of
the normal vectors of the facets defined by the reciprocal edges of
the vertex. If n edges of the piecewise linear mesh are defined with
vertex j, the estimative of the normal vector for this vertex involves
the determination of the normal vector, n, for each of the n facets.
Fig. 10 presents the notation used to define the reciprocal edges
as well as the normal vectors of each facet, when evaluating the
normal vector of vertex j. All the methods presented in this section
share the notion of weighting adjacent facet normal vectors, but
they differ substantially in the weighting factor adopted [52].

4.2.1. Mean weighted equally
The algorithm presented in this subsection to estimate the

vertex normal vector was introduced by Gouraud, in 1971. This
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Fig. 10. Notation used to approximate the normal vector at vertex j shared by n piecewise facets.
algorithm will be referred as the mean weighted equally (MWE)
algorithm, since the normal vector is determined as [48]:

nMWE ∥

n
i=1

ni, (18)

where ni is the normal vector of the plane (facet) i and the
summation is over all the n planes (facets) defined by vertex j (cf.
Fig. 10). The symbol ∥ indicates that the calculated vector is parallel
to the unit vertex normal vector, since the required normal vector
is always unitary.

4.2.2. Mean weighted by angle
While Gouraud (1971) [48] suggested equal weights, in 1998

Thürmer and Wüthrich proposed as weights the planes (facets)
angles at the vertices. Defining as αi the angle between the two
edge vectors ei and ei+1 of plane (facet) i sharing the vertex (see
Fig. 10), the normal vector of the vertex is in this case determined
as [49]:

nMWA ∥

n
i=1

αini. (19)

This will be referred as the mean weighted by angle (MWA)
algorithm.

4.2.3. Mean weighted by sine and edge length reciprocals
The next four algorithms were introduced by Max, in 1999. The

first algorithm, referred as the mean weighted by sine and edge
length reciprocals (MWSELR), takes into account the differences in
size of the adjacent edges to the vertex, assigning larger weights
to smaller edges and higher angles between the two edge vectors.
The normal vector to the vertex is determined as [50]:

nMWSELR ∥

n
i=1

ni sin(αi)

|ei| |ei+1|
, (20)

where ni, ei, ei+1 and αi are defined as in the previous subsection.

4.2.4. Mean weighted by areas of adjacent triangles
The second algorithm, proposed by Max (1999) [50], incorpo-

rates the area of the triangle formed by the two edges incident on
the vertex (whether the facet is triangular or not). Thus, this algo-
rithm assigns larger weights to facets with larger area. The vertex
normal vector is estimated using the following expression:

nMWAAT ∥

n
i=1

ni |ei| |ei+1| sin(αi) =

n
i=1

ni |ei ⊗ ei+1| , (21)

where ni, ei, ei+1 and αi were defined in Section 4.2.2 and ⊗

represents the cross product of two vectors. This algorithm will
be referred as the mean weighted by areas of adjacent triangles
(MWAAT).

4.2.5. Mean weighted by edge length reciprocals
Max (1999) [50] also proposes to remove the sine factor in

Eq. (20), which leads to an estimate of the vertex normal vector
given as:

nMWELR ∥

n
i=1

ni

|ei| |ei+1|
, (22)

where ni, ei and ei+1 are defined as in Eq. (19). This algorithm
will be referred as the mean weighted by edge length reciprocals
(MWELR) and assigns larger weights to smaller edges.

4.2.6. Mean weighted square root of edge length reciprocals
The last algorithm proposed byMax (1999) [50] is similar to the

MWELR, with the addition of a square root:

nMWRELR ∥

n
i=1

ni
√

|ei| |ei+1|
, (23)

where ni, ei and ei+1 are defined as in Eq. (19). This will be referred
as the mean weighted by square root of edge length reciprocals
(MWRELR) algorithm.

4.2.7. Methodology to correct the vertex normal vector approximation
The above mentioned algorithms are suitable and offer good

results for regular piecewise linear meshes of smooth surfaces
with high level of continuity [52]. However, typically sheet metal
forming tools present a combination of flat and curved surface
regions. In the boundary between these two types of surfaces
none of the presented algorithms show the same level of accuracy,
particularly in coarse meshes. Therefore, in order to reduce the
normal vector approximation error in those regions, we propose
a methodology that corrects the normal vector in the vertices that
share a flat surface.

The central idea of the proposed methodology is based on
the comparison between the normal vector of each piecewise
linear element and the corresponding approximated normal
vectors at their vertices. Hence, when a vertex belonging to an
element presents an approximated normal vector equal to the
normal vector of the own element, the implemented algorithm
imposes that all vertices of this element should present the
normal vector of the own element. Fig. 11 presents an example
of a 2D geometry composed by two transition zones between
flat and curved surfaces, which is representative of 3D surface
cross sections, usually present in tool geometries involved in the
numerical simulation of sheetmetal forming processes. For this 2D
geometry, discretized with the piecewise mesh shown in Fig. 11,
the application of the MWE algorithm to approximate the normal
vector in each vertex (denoted byn(i)) leads to normal vector errors
of 11.25° in the vertices 2 and 4. In fact, regardless of the normal
vector approximation algorithm adopted, the evaluated normal
vectors in these vertices are influenced by the normal vector of
the piecewise elements 2 and 3, leading to high error values in
the normal vector approximation. The application of the proposed
methodology significantly improvements the normal vector of
vertices 2 and 4, as shown in Fig. 11 through the normal vectors
denoted by n′

(i). In fact, in this example the application of the
correction methodology leads to a null error in the approximation
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Fig. 11. Effect of the proposed correction methodology in the normal vector
approximation of vertices 2 and 4. Corrected normal vectors are denoted by n′

(i) .

Fig. 12. Radial error resulting from the Nagata interpolation of a circular arc using
the vertex normal vectors evaluated through the MWE algorithm. Effect of the
proposed correction methodology in the interpolation accuracy.

of the normal vector for all vertices. In order to highlight the
influence of the normal vectors accuracy in the Nagata patch
interpolation, Fig. 12 presents the radial error resulting from the
interpolation of the circular arc using the normal vectors estimated
by the MWE algorithm, employing or not the proposed correction
methodology. The range of the radial error obtained with the
interpolation that uses the normal vectors without correction is
almost ten times higher than the one obtained with the correction
methodology.

5. Nagata patches applied to tool description

The Nagata patch interpolation error analysis performed
considering the unit quarter circular arc in Section 3 can be used as
a guideline for the description of 3D surfaces, such as the cylinder,
sphere and the torus. Previous results obtained considering these
simple surfaces [39], indicate that the radial error in the cylinder is
dictated only by the discretization in the circumferential direction,
where the maximum error value attained is equal to the one
obtained for the corresponding circular arc. In case of the sphere,
discretized by triangular piecewise linear elements, the maximum
radial error is dictated by the maximum edge length, which is
easily relatedwith the normalized arc length presented in Fig. 8(a).
Finally, the torus presents two principal curvatures that increase
its complexity. When quadrilateral piecewise linear elements are
used to describe the torus surface, the maximum positive radial
error is located at hyperbolic points, while the maximum negative
error arises in elliptic points. The limit value of radial error is
Fig. 13. Tools geometry, defined by trimmed NURBS surfaces, employed in the
sheet metal forming process [53].

mainly dictated by the number of piecewise linear elements in the
major radius direction [39].

In this section, the Nagata patch interpolation is applied to
describe a sheet metal forming tool. Fig. 13 presents the tools
geometry (punch, blank holder and die) selected for this analysis,
which correspond to the forming of a complex shape part [53]. The
analysis is performed considering only the die, since the punch
and the blank holder present a geometry which can be obtained
by off-set of the die surfaces. The die has a high complex shape,
combining plane, cylinder, sphere and torus surfaces. Its length,
width and height are 596, 320 and 75 mm, respectively, and the
minor curvature radius present in the geometry is 8 mm.

The information required for the Nagata patch interpolation
algorithm is only the position vector and the normal vector of
each vertex of the mesh. The position vectors are determined
from the piecewise linear mesh of the geometry under study,
which can be composed by triangular or quadrilateral elements.
It is important to mention that the surface orientation dictates
the elements connectivity and, consequently the normal vector
orientation. At this stage, the information available in CAD model
is used to determine the normal vector in each vertex of the
piecewise mesh.

The piecewise linear meshes used in this study to discretize the
die model are divided in two topological groups: structured and
semi-structured meshes. In each of these groups both triangular
and quadrilateral elements are used. The coarse meshes are
obtained considering amaximumof 3 elements along each circular
arc, while the fine meshes use a maximum of 4 elements. Fig. 14
presents the coarser structured piecewise mesh obtained with
triangular elements (Mesh T1), as well as a detail of the four
different meshes in a zone with more complex shape. Meshes T1
and T2 are structured while the T3 and T4 are semi-structured.
Fig. 15 presents the coarser structured piecewise linear mesh
composed by quadrilateral elements (Mesh Q1), as well as a detail
of the same zone for the other meshes that considers quadrilateral
elements. Meshes Q1 and Q2 are structured while Q3 is semi-
structured. In this case, the two structured meshes are composed
by triangular elements in the die corners, as shown in Fig. 15, due
to the simplicity of describing a 3-sided surface with triangular
elements generated symmetrically [37]. The main features of both
triangular and quadrilateral piecewise linear meshes are shown
in Table 1. For the models composed only by triangular elements,
the number of elements and vertices is similar for both structured
and semi-structured meshes, in order to be able to perform a
direct comparison. However, it is not possible to adopt the same
strategy for the quadrilateral meshes, due to the high increase in
the number of elements in semi-structured meshes. Globally, the
quadrilateral models present fewer elements that the triangular
models, which can be more suitable for contact search algorithms.
Nevertheless, in general, the quadrilateralmesh generation ismore
complex and time consuming.

In order to also evaluate the accuracy of the piecewise
linear meshes, the Nagata patch interpolation is applied to each
piecewise mesh using a null value for the coefficients that add the
curvature to the patch, i.e. using linear interpolation.
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Fig. 14. Die model described by triangular piecewise elements and detail of the same zone for the 4 models: T1 and T2 structured and T3 and T4 semi-structured meshes.
Fig. 15. Die model described by quadrilateral piecewise elements and detail of the same zone for the 3 models: Q1 and Q2 structured and Q3 semi-structured meshes.
Table 1
Main characteristics of the piecewise meshes used to describe the die tool.

Mesh characteristic Piecewise triangular mesh Piecewise quadrilateral mesh
Structured Semi-structured Structured Semi-structured
T1 T2 T3 T4 Q1 Q2 Q3

Number of elements 4196 6464 4058 6562 1262 1892 3807
Number of vertices 2130 3271 2052 3310 1276 1899 3854
5.1. Error in the Nagata patch interpolation

In order to evaluate the accuracy of the Nagata patch
interpolation applied to the die, two types of errors are analyzed.
The first one is the shape error that is evaluated as follows:

δShape(η, ζ ) = (P − P′) · nCAD

= (xNagata(η, ζ ) − P′) · nCAD = −d · nCAD, (24)

where P ≡ xNagata(η, ζ ) is the position vector of each point where
the error is evaluated, P′ is the orthogonal projection of point P
on the NURBS surface (see Appendix) and nCAD is the unit normal
vector of the NURBS surface at the point P′. This error corresponds
to the signed distance d between a point on the Nagata patch
and the NURBS surface, measured in the orthogonal direction and
expressed in the same length units that the geometry is defined
(in this case millimetres). In order to highlight the graphical
interpretation of Eq. (24), Fig. 16 shows the error calculated in two
points P1 and P2, where the first point presents a negative shape
error while the second has a positive one. The C0 continuity of
the discretized surface is guarantee both in the piecewise mesh
and the Nagata patch interpolation. Therefore, the shape error is
a continuous function and is possible to plot it as a continuous
distribution.

The second type of error studied is the normal vector error,
given by:

δn(η, ζ ) = cos−1(nNagata(η, ζ ) · nCAD)[°], (25)

where nNagata(η, ζ ) is the unit normal vector of each point P of the
Nagata patch where the error is evaluated. This error corresponds
to the angle between the normal vector evaluated through the CAD
model geometry, obtained at the point P′of the NURBS surface,
Fig. 16. Evaluation of the shape and normal vector errors for two points on the
Nagata patch interpolation: point P1 with a negative shape error (d1 · nCAD > 0)
and P2 with a positive shape error (d2 · nCAD < 0).

and the normal vector of the Nagata patch, expressed in degrees.
Fig. 16 also presents the variables necessary to evaluate this
error, for both P1 and P2. However, unlike the shape error, the
normal vector error is not a continuous function. According to the
Nagata patch algorithm, the normal vector is continuous inside
each patch, and in the vertices, if a singular case is not attained.
Nevertheless, in the edges the C1 continuity condition is not
verified. To overcome this limitation Nagata proposed a G1 Nagata
patch interpolation [38]. However, this algorithm leads to much
more complex interpolations and the C0 continuity guaranteed
by the original Nagata patch interpolation is sufficient, even for
high-precision engineering [54]. In the next section, both errors
are analyzed for the selected tool geometry, described by either
triangular or quadrilateral piecewise linear meshes and Nagata
patches.

5.2. Accuracy of the Nagata patch interpolation using normal vectors
evaluated from CAD geometry

This section presents the comparison between the piecewise
linear mesh and the corresponding Nagata patch interpolation,
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Fig. 17. Shape error distribution in the tool model approximated by: (a) triangular piecewise linear mesh T1 and; (b) Nagata patch interpolation.
Table 2
Comparison of shape and normal vector error between triangular piecewise linear approximation and Nagata patch interpolation.

Triangular mesh Piecewise linear mesh Nagata patch
Shape error [mm] Normal vector error [°] Shape error [mm] Normal vector error [°]
Min. Max. Range Max. Min. Max. Range Max.

T1 −0.617 0.954 1.57 43.9 −0.090 0.096 0.19 18.1
T2 −0.278 0.538 0.82 25.2 −0.048 0.048 0.10 11.2
T3 −1.250 1.199 2.45 43.9 −0.290 0.182 0.47 19.5
T4 −0.707 0.940 1.65 39.3 −0.095 0.095 0.19 13.8
both in terms of shape and normal vector errors, when the normal
vectors in each vertex are provided from the CAD geometry.
This analysis is performed for all models, 4 triangular and 3
quadrilateral piecewise linear meshes, applying the Nagata patch
algorithm using the control coefficient values of ε1 = 0.036 and
ε2 = 0.020. These values were chosen as the minimum ones to
control both type of piecewise linear meshes, i.e. triangular and
quadrilateral, when using the normal vectors evaluated from CAD
geometry.

5.2.1. Triangular patches
The error analysis, both in the piecewise mesh and the Nagata

patch interpolation, is performed using the maximum, minimum
and range of the shape error and the maximum normal vector
error. Table 2 presents these limit values for both the piecewise
linear mesh and the triangular Nagata patch interpolation. Using
the Nagata patch interpolation to smooth the piecewise meshes,
the error range decrease significantly, for both types of error
analyzed. The range of the shape error in the Nagata patches is
always at least 80% lower than the one in the piecewise linear
meshes, whatever the mesh description considered. The same
behavior is observed in the normal vector error, where the range
in the Nagata patches is always at least 55% lower than the one in
the piecewise meshes.

The distribution of the shape error allows observing the zones
where the maximum error values are attained. This distribution
is obtained by constructing a fine grid of points over each patch
and calculating the shape error in each point. Due to the nearly
geometrical symmetry of the model, the distribution of the shape
error is performed only in an area of the die geometry, where
the limit values of the shape error are attained. Fig. 17 shows
the comparison of shape error distribution between the piecewise
linear mesh T1 and the corresponding Nagata patch interpolation.
The application of the Nagata patch interpolation in the triangular
mesh leads to a strong decrease of the shape error in all geometry,
but particularly in the cylindrical zones, following the same trend
predicted for the circular arc (see Fig. 8 (a)). In the case of the
triangular mesh T1, the interpolation results in a shape error range
88 % lower than the piecewise linear mesh.

The distribution of both errors is also analyzed in a selected
cross section of the die geometry, where the shape is more
Fig. 18. Location of the tool cross sectionwhere the error distributions are analyzed
and detail of its original geometry.

complex. The cross section, shown in Fig. 18, is divided in seven
segments labeled from A to G. This analysis is performed only for
the coarser structured mesh T1, which is representative of the
results obtained with the other piecewise meshes. Fig. 19 shows,
for both piecewise linearmesh and Nagata patch interpolation, the
evolution of the shape error along the selected cross section. The
difference of error values betweenboth approaches is evident,with
the maximum value attained in the Nagata patch approach being
10 times less than in the piecewise mesh. Both in the piecewise
mesh and in the Nagata patch interpolation, the maximum value
of shape error for this geometry is attained in this section. For the
piecewise linear mesh the maximum value is attained in region
C while for the Nagata patch interpolation the maximum values
occur in region B, corresponding to a more complex hyperbolic
region. Section C corresponds to a parabolic region, for which the
error ismainly dictated by the circumferential element size, i.e. the
normalized arc length [39].

The normal vector error distribution for both approaches, in the
same cross section, is shown in Fig. 20. As previouslymentioned, in
order to guarantee the stability of the Nagata patch interpolation,
the restrictions to the original Nagata formulation presented in the
Section 2.3, were implemented. Thus, some patches do not satisfy
the imposed boundary conditions, leading to linear interpolations.
This is visible in region B of the cross section (Figs. 19 and
20), where the error distributions are overlapping for the region
corresponding to the connection element with region A, which
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Table 3
Comparison of shape and normal vector error between quadrilateral piecewise linear approximation and Nagata patch interpolation.

Quadrilateral mesh Piecewise linear mesh Nagata patch
Shape error [mm] Normal vector error [°] Shape error [mm] Normal vector error [°]
Min. Max. Range Max. Min. Max. Range Max.

Q1 −0.888 1.458 2.35 28.0 −0.063 0.172 0.23 8.7
Q2 −0.406 0.783 1.19 18.5 −0.020 0.048 0.07 4.9
Q3 −1.220 1.303 2.52 42.0 −0.149 0.147 0.30 10.0
Fig. 19. Shape error distributions along the cross section in the triangular mesh T1.

Fig. 20. Normal vector error distributions along the cross section in the triangular
mesh T1.

indicates the adoption of the linear interpolation for this element.
The maximum normal vector error is not attained in this cross
section. For the piecewise linear mesh, the maximum value is
attained in a region located in the die shoulder, which presents
two elements with a much larger size along the circumferential
direction than along the edge direction, which connect to the
addendumsurface. On the other hand, themaximumerror attained
in the Nagata patch interpolation is located in the boundary
vertices between region A and B, due to the linear interpolation
imposed for the patches that share these vertices. Thus, in specific
cases the adoption of the proposed controlling methodologies
can result in an increase of both errors, when compared with
the original Nagata patch interpolation algorithm. Nevertheless,
considering the cross section under analysis, the maximum error
value attained for the piecewise mesh is 29.2°, while in the Nagata
interpolation is only 9.4°, thus 68% lower.

5.2.2. Quadrilateral patches
The limit values of both studied errors for the three quadri-

lateral element meshes are presented in Table 3. The shape error
range in the Nagata interpolation is always at least 88% lower than
in the piecewise linear mesh, even for the semi-structured mesh
Q3. The error in the normal vector is also reduced when the inter-
polation is applied, being always at least 69% lower than the one
attained in the piecewise linear mesh.

Fig. 21 shows the comparison between the piecewise linear
mesh and the Nagata patch interpolation in terms of shape
error distribution, for the quadrilateral mesh Q1. The error
range is smaller in the Nagata patch interpolation compared
with the convectional piecewise linear mesh, particularly in
coarser discretized zones. For this structured mesh, the Nagata
interpolation presents a shape error range 90% lower than the
piecewise mesh, similar to the result obtain with the triangular
mesh T1.

The evolution of both the shape and normal vector errors in the
piecewise linear mesh and in the Nagata interpolation, along the
selected cross section presented in Fig. 18, is shown in Figs. 22 and
23, respectively. The maximum value of both errors is attained in
this cross section, but in different locations. In the piecewise mesh
the maximum value of both errors are located in region D (elliptic
points), while the region B (hyperbolic points) is where are located
the maximum errors in the Nagata patch interpolation.

The maximum shape error value in the piecewise linear mesh
is 1.46 mm, while in the Nagata patch interpolation is 0.17 mm,
thus about 88% lower. It should be mentioned that the shape
error value in the piecewise mesh would forbidden its application
in the numerical simulation of this sheet metal forming process,
since it is close to the value of the gap between the die and the
punch. While the piecewise linear mesh attains a maximum of
27.9° for the normal vector error, the Nagata patch interpolation
presents a maximum value of 8.7°, thus 69% lower than the
piecewise mesh. This difference is similar to the one obtained for
the triangular mesh T1 in this section. However, unlike for the
triangularmesh T1, the interpolation result obtained in this section
a b

Fig. 21. Shape error distribution in the tool model approximated by: (a) triangular piecewise linear mesh Q1 and; (b) Nagata patch interpolation.
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Fig. 22. Shape error distributions along the cross section in the quadrilateral mesh
Q1.

Fig. 23. Normal vector error distributions along the cross section in the
quadrilateral mesh Q1.

with the quadrilateral mesh Q1 is not affected by the restrictions
introduced in the original Nagata patch interpolation, keeping
the boundary conditions for all vertices of the elements along
this section. This is a result of the reduced number of piecewise
linear elements (see Table 1) and also of the type of element. In
fact, finer refinements typically lead to more problems concerning
inversion of surface orientation. These problems also arise more
frequently in triangular elements, since they are more flexible
in the surface geometry representation. The inversion of surface
orientation problem is minimized in piecewise meshes with the
element edges aligned along the geometry main curvatures, as is
the case of the majority of the zones of the quadrilateral models
studied in this work.

5.3. Error in the normal vectors approximation

In order to evaluate the efficiency of the normal vector
estimative algorithms presented in Section 4.2, they were all
applied to the previously presented die piecewise linear meshes.
The error in normal vector approximation is evaluated in each
vertex of the mesh, using the following definition:

θ = cos−1(nCAD · nalgorithmic)[°], (26)

where nalgorithmic is the unit normal vector evaluated in each vertex
of the mesh using the different algorithms previously presented
and nCAD is the unit normal vector of the CAD model (NURBS
surface). Thus, this error is calculated only in the vertices of
the piecewise mesh and corresponds to the angular difference
between the CAD and the approximated normal vectors, expressed
in degrees.

The cumulative distributions of the normal vector error were
studied. In this section these results are presented only for
meshes T1 and Q1, since they are representative of the global
behavior. Fig. 24 presents the cumulative distribution of the
normal vector error approximation formesh T1. The analysis of this
figure allows observing the improvement in the normal vectors
Fig. 24. Distribution of normal vector approximation error obtained for mesh T1,
with and without applying the correction methodology to the different normal
vector approximation algorithms.

Fig. 25. Distribution of normal vector approximation error obtained for mesh Q1,
with and without applying the correction methodology to the different normal
vector approximation algorithms.

approximation when the correction methodology proposed in
the Section 4.2.7 is applied. In fact, the correction leads to a
higher number of vertices with a small error in the normal
vector approximation, regardless of the algorithm used. The same
cumulative distribution is presented in Fig. 25 for the normal
vector error approximation obtained in mesh Q1. Also, in this
case it is visible that the correction methodology clearly improves
the error distribution. Therefore, the methodology proposed to
improve the normal vector approximation is suitable for both
triangular and quadrilateral structuredmeshes. For both triangular
and quadrilateral structured meshes, the MWAAT algorithm
provides the best solution in terms of the error distribution, before
and after applying the correction methodology (sees Figs. 24 and
25). This behavior is due to the fact that the selected geometry
comprises big flat areas. In fact, during the tools description
process, these areas can be discretized with a low number of
piecewise elements, leading to a coarse mesh. Since the MWAAT
algorithm adopts the area of element as weight, bigger elements
present higherweight than others. Thus, the nodes in the boundary
between flat and curve surfaces will present an approximated
normal vector closer to the normal vector of the flat surface, i.e. the
exact normal vector.

Fig. 26 presents the maximum error attained in the normal
vector approximation for each die model considered, with and
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Fig. 26. Maximumnormal vector approximation error attained for eachmesh using the different algorithms: (a) without applying the correctionmethodology; (b) applying
the correction methodology.
without the correction methodology applied. The effect of the cor-
rection method in the maximum normal vector approximation
error is lower than in the error distribution due to the local char-
acteristic of the first one. Whatever the approximation algorithm
used or the type of mesh, the maximum error attained after cor-
rection is always inferior or equal to the one obtained without
correction (see Fig. 26). The maximum error is always reached in
vertices located in the boundary between different surfaces, since
the C1 continuity is not attained at those boundaries. However, a
better distribution of the normal vector approximation does not
directly imply a lower value for the maximum error. In both tri-
angular and quadrilateral meshes, the increase in the number of
elements (piecewise mesh refinement) implies a decrease of the
maximum error, while for the same number of elements the best
approximation is attained by structured meshes. Fig. 26(b) shows
that for structured meshes, when the correction method is ap-
plied, the MWE algorithm always gives the best solution in terms
of maximum error attained due to the use of equal weights for all
elements. Except for the quadrilateral mesh Q3, the MWA algo-
rithm presents always a good solution even for triangular semi-
structured meshes, where it is clearly the best solution, while the
MWELR algorithm provides the worst approximation. The MWA
algorithm leads to good results for both triangular and quadri-
lateral meshes that present small angles (always less than 90°)
between the element edges. This is always more easy to assure in
triangular models as well in quadrilateral structured models.

5.4. Accuracy of the Nagata patch interpolation using approximated
normal vectors

This section analyses the effect of the normal vector approx-
imation in the Nagata patch interpolation accuracy. The analysis
is performed comparing the Nagata patch interpolation using ap-
proximatednormal vectorswith the one obtainedusing thenormal
vectors evaluated from the CADgeometry aswell aswith the piece-
wise linear mesh. The approximated normal vectors considered
in this analysis always take into account the correction method-
ology proposed, since it always renders inferior error in the nor-
mal vector estimative. Due to normal vector approximation, the
range of singular cases is increased in order to control the Nagata
patch interpolation. For structured meshes the values used for the
coefficients are ε1 = 0.070 and ε2 = 0.015, while for the semi-
structured meshes the value of ε1 is increased to 0.075. These val-
ues were chosen as the minimum ones necessary to control the
Nagata patch interpolation of the piecewise linear meshes, when
using approximated normal vectors.

Figs. 27 and 28 presents the shape error range and the
maximum normal vector error in the Nagata patch interpolation,
respectively. The figures include the results for all studied meshes
and present the values attained for the piecewise linear meshes
Fig. 27. Shape error range obtained in the Nagata patch interpolation for each
mesh using the different normal vector approximation algorithms. Comparison
with range values attained for piecewise linear mesh and Nagata interpolations
based on the exact vertex normal vector.

(labeled Piecewise linear), for the Nagata patch interpolation using
the normal vectors evaluated from the CAD geometry (labeled
Nagata+CAD) and for the Nagata patch with approximated
normal vectors, using the different algorithms. The use of normal
vectors evaluated from the CAD geometry in the Nagata patch
interpolation gives always the best approximation, in terms of both
errors under analyses. On the contrary, the definition of the die
geometry with the piecewise linear meshes leads to the worst
approximation in terms of both errors. There is only one exception
to this global behavior, which occurs when the MWAAT algorithm
is applied to mesh T4.

In order to analyze the influence of the normal vectors
approximation in the Nagata patch interpolation, the shape and
normal vector error distributions along the selected cross section,
presented in Fig. 18, are determined for mesh Q1. This mesh is
selected because it allows a better comparative analysis of the
normal vector estimative algorithms since it is the coarser mesh.
Both quadrilateral structured meshes, Q1 and Q2, are composed
by elements with angles between edges near 90° with a small
dispersion, thus some algorithms to approximate the normal
vector present a similar behavior, as shown in Figs. 25 and 26. The
MWA algorithm presents results similar to the MWE algorithm
(see Eqs. (18) and (19)), while the MWSELR gives a similar error
to the one attained with the MWELR algorithm (see Eqs. (20) and
(22)). Therefore, the analysis is performed considering only the
following three algorithms: MWE, MWAAT and MWELR.
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Fig. 28. Maximum normal vector error obtained in the Nagata patch interpolation
for each mesh using the different normal vector approximation algorithms.
Comparison with the values attained for piecewise linear mesh and Nagata
interpolations based on the exact vertex normal vector.

Fig. 29. Shape error distributions along the cross section in the quadrilateral mesh
Q1 for different normal vector approximation algorithms.

The shape and normal vector error distributions of the Nagata
patch interpolation along the selected cross section, for mesh
Q1, are presented in Figs. 29 and 30, respectively. The use of
approximated normal vectors in the Nagata patch interpolation
leads to an increase of the maximum value of both errors. This
increase is only observed in some elements due to a less accurate
approximation of the normal vector in at least one vertex of the
element. The vertices that present higher value of normal vector
error are characterized by being in the boundary between two
surfaces with non null curvature. This is observable in Figs. 29
and 30, where only the elements that share a boundary between
the regions B–C, C–D and F–G present a significant error relatively
to the Nagata patch that uses normal vectors evaluated from
CAD geometry. The same figures show that the use of the MWE
algorithm in theNagata patch interpolation gives always a solution
between the ones obtained using the MWAAT and the MWELR
algorithms. The MWAAT algorithm uses a weight proportional
to the edge size of the elements, while the weight used in the
MWELR algorithm is inversely proportional to the edge size.
Thus, application of these two algorithms gives opposite solutions
both in the shape and normal vector error of the Nagata patch
interpolation.

In order to obtain an overview of the error distributions in the
Nagata patches obtained using approximated normal vectors, a
grid of points is constructed over all patches, and the errors are
calculated in each point. This study is performed for mesh T1,
for which the limit error values attained are already known (see
Fig. 30. Normal vector error distributions along the cross section in the
quadrilateral mesh Q1 for different normal vector approximation algorithms.

Figs. 27 and 28). Figs. 31 and 32 show the shape and normal vector
error distribution in the Nagata patch interpolation, respectively.
The analysis is performed considering the piecewise linear mesh
as well as the Nagata patch interpolations using vertex normal
vectors evaluated both from CAD model and applying the MWE
algorithm. In both figures, the coordinates of the points where
the error is evaluated are projected in the x-axis, which is the
direction of greater length, in order to plot the distribution in a 2D
scatter. Fig. 31 shows thatmost points of the piecewise linearmesh
present a shape error range less than 1.2 mm, while most points of
the Nagata patch interpolation using vertex normal vectors from
CAD geometry present a range inferior to 0.05 mm. The use of
the MWE algorithm to approximate the normal vectors gives a
shape error range less than 0.5 mm, for most points. The Nagata
patch interpolation using the MWE algorithm present a maximum
normal vector error inferior to 15°, for most points. Comparing
Figs. 31 and 32 it is possible to observe that for the Nagata patch
interpolation using the normal vectors from CAD geometry, the
regions where the shape error range attains the highest value
corresponds to the ones where the maximum normal vector error
also occurs. This is a consequence of the geometric complexity
of this region (transition between flat surface and torus) and the
coarse description adopted. The comparison of Figs. 27 and 28
with 31 and 32 allows confirming the local characteristic of the
maximum range of the shape error and the normal vector error.
Thus, the Nagata patch interpolation, even using approximated
normal vectors, leads to an improved geometric description when
compared to the piecewise linear mesh.

6. Conclusions

In this work the Nagata patch interpolation is applied to a
complex sheet metal forming tool description using both normal
vectors evaluated from CAD geometry or approximated using
different algorithms, all based on the weighted average of the
normal vectors of facets adjacent to the vertex. The singular case
domain of the original Nagata patch interpolation algorithm is
extended in order to avoid inversion of curve orientation or high
localized curvature, situations that must be avoided when using
this type of approach for contact surface description. The complex
tool is discretized with triangular and quadrilateral elements,
using both structured and semi-structured meshes. The shape and
normal vector errors are evaluated and compared for the piecewise
linear mesh, the Nagata patch interpolation using normal vectors
evaluated from CAD geometry and the Nagata patch interpolated
using approximated normal vectors. Based on the results analysis
it is possible to observe:

• The introduction of the proposed correction methodology
to the original Nagata patch interpolation leads to a more
robust algorithm without degradation of the shape accuracy.
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Fig. 31. Shape error distribution for the mesh T1 model, represented considering the coordinates of the geometry evaluated points projected in the x-axis.
Fig. 32. Normal vector error distribution for the mesh T1 model, represented considering the coordinates of the geometry evaluated points projected in the x-axis.
The adopting of this correction methodology can leads to an
increase of both shape and normal vector errors in specific
elements where it is applied. Nevertheless, the Nagata patch
interpolation always presents a shape error at least 80% lower
than the piecewise linear mesh and a normal vector error at
least 55% lower.

• The use of approximated normal vectors in Nagata patch
interpolation can be improved by adopting a methodology
that corrects the normal vector in vertices that share a flat
surface. Using this methodology, the different algorithms for
vertex normal vector approximation can even lead to similar
cumulative normal vector approximation error distributions,
particularly for structured meshes.

• The maximum vertex normal vector approximation error is in-
fluenced by the mesh typology (i.e. triangular or quadrilateral),
the mesh topology (i.e. structured or semi-structure) and the
complexity of the original geometry. Thus, it is not possible
to select an algorithm for vertex normal vector approximation
which renders accurate results in all situations. Nevertheless,
when compared with the other algorithms considering the dif-
ferent piecewise linear meshes, the MWE algorithm presents a
lower average of the maximum normal vector approximation
error.

• The Nagata patch interpolation using normal vectors evaluated
from CAD geometry always renders the more accurate interpo-
lation, both in terms of shape and normal vector errors. The use
of approximated normal vectors in the Nagata patch algorithm
reduces the accuracy, in particular for coarse piecewisemeshes.

In brief, the use of Nagata patch to describe tool surfaces in
the numerical simulation of sheet metal forming processes is a
good alternative in terms of accuracy relatively to the widely
used piecewise linear meshes. Furthermore, its characteristic
reduced interpolation degree allows keeping the simplicity in the
mathematical formulation of the contact search treatment.
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Appendix. Projection of a point on a NURBS surface

Considering a generic point P(x, y, z) that will be orthogonally
projected on a NURBS surface S(u, v), in order to obtain the
projection point P′. According to Stadler et al., the distance vector
r(u, v), which connects the point P to an arbitrary point S(u, v) of
the surface, is defined as [25]:

r(u, v) = S(u, v) − P(x, y, z) (A.1)

and its evaluation requires the following orthogonal conditions:
f (u, v) = Su(u, v) · r(u, v) = 0
g(u, v) = Sv(u, v) · r(u, v) = 0, (A.2)

where Su(u, v) = ∂S(u, v)/∂u and Sv(u, v) = ∂S(u, v)/∂v
indicate the first partial derivatives of the surface. In order to solve
the above nonlinear system of equations, the Newton–Raphson
method can be applied, leading to the incremental solution vector:

[δi] =


∆ui
∆vi


, (A.3)

where the Jacobian matrix of system of equations presented in
(A.2) is:

[Ji] =


fu fv
gu gu


i
=


|Su|2 + r · Suu Su · Sv + r · Suv
Su · Sv + r · Suv |Sv|

2
+ r · Svv


i

(A.4)
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and the residual vector is:

[κi] = −


f (ui, vi)
g(ui, vi)


, (A.5)

where the second order surface partial derivatives of the surface
are given by Suu = ∂2S(u, v)/∂u2, Svv = ∂2S(u, v)/∂v2 and Suv =

∂2S(u, v)/∂u∂v. The initial values u0 and v0 should be given a
priori, influencing the convergence speed. In the adopted approach
the initial values are estimated based on the minimum distance
between P and a set of points of the surface, equally spaced in
the parametric domain. This enables to write the iterative solution
procedure for step i as:

[Ji][δi] = [κi] (A.6)

and to update according to:
ui+1
vi+1


=


ui
vi


+ [δi] . (A.7)

The necessary derivatives of the NURBS surface S(u, v) can be
obtained with:

∂k+l

∂ku∂ lv
S(u, v) =

n
i=0

m
j=0

N (k)
i,p (u)N (l)

j,p(v)Pi,j (A.8)

with

N (k)
i,p (u) = p


N (k−1)

i,p−1

ui+p − ui
−

N (k−1)
i+1,p−1

ui+p+1 − ui+1


. (A.9)
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